精英家教网 > 初中数学 > 题目详情
已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.求证:PC=AN.
分析:确定一对全等三角形△AQP≌△MNA,得到AN=PQ;然后推出BP为角平分线,利用角平分线的性质得到PC=PQ;从而得到PC=AN.
解答:证明:∵BA⊥AM,MN⊥AC,
∴∠BAM=ANM=90°,
∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,
∴∠PAQ=∠AMN,
∵PQ⊥AB MN⊥AC,
∴AQ=MN,
在△AQP和△MNA中,
∠PAQ=∠AMN
∠PQA=∠ANM=90°
AQ=MN

∴△AQP≌△MNA(ASA)
∵AN=PQ AM=AP,
∴∠AMB=∠APM
∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°
∴∠ABM=∠PBC
∵PQ⊥AB,PC⊥BC
∴PQ=PC(角平分线的性质),
∴PC=AN.
点评:本题是几何综合题,全等三角形的判定与性质、角平分线性质等重要知识点.题干中给出的条件较多,图形复杂,难度较大,对考生能力要求较高;解题时,需要认真分析题意,以图形的全等为主线寻找解题思路.解答中提供了多种解题方法,可以开拓思路,希望同学们认真研究学习.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案