精英家教网 > 初中数学 > 题目详情

【题目】已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.

(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.

【答案】
(1)解:如图①,连接AC,

∵AT是⊙O切线,AB是⊙O的直径,
∴AT⊥AB,即∠TAB=90°,
∵∠ABT=50°,
∴∠T=90°﹣∠ABT=40°,
由AB是⊙O的直径,得∠ACB=90°,
∴∠CAB=90°﹣∠ABC=40°,
∴∠CDB=∠CAB=40°
(2)解:如图②,连接AD,

在△BCE中,BE=BC,∠EBC=50°,
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°,
∵OA=OD,
∴∠ODA=∠OAD=65°,
∵∠ADC=∠ABC=50°,
∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°
【解析】(1)连接AC,根据圆的切线垂直于经过切点的半径可得∠TAB=90°,由已知条件可求得∠T和∠CDB的度数。
(2)连接AD,在△BCE中,根据已知条件:BE=BC,∠EBC=50°,可求得∠BCE=∠BEC=65°,由同弧所对的圆周角相等可得∠BAD=∠BCD=65°,再根据等边对等角得∠ODA=∠OAD=65°,∠CDO=∠ODA﹣∠ADC,∠CDO的度数可求。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长分别为的两个正方形并排放在一起,连结并延长交于点,交于点,则

A. B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图形的操作过程:
在图①中,将线段A1A2向右平移1个单位到B1B2 , 得到封闭图形A1A2B2B1(即阴影部分);
在图②中,将折线A1A2A3向右平移1个单位到B1B2B3 , 得到封闭图形A1A2A3B3B2B1(即阴影部分).

(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;

(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:
S1= , S2= , S3=
(3)联想与探索:
如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y1kx+by2=﹣4x+a的图象如图所示,且A04),C(﹣20).

1)由图可知,不等式kx+b0的解集是   

2)若不等式kx+b>﹣4x+a的解集是x1

①求点B的坐标;

②求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展朗读比赛活动,九年级班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100如图所示.

平均数

中位数

众数

85

85

80

根据图示填写表格;

结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;

如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形AOCB的顶点OA的坐标分别是(00)、(0a),且满足 DAB上一点, MN垂直平分OD,分别交ABODOC于点MEN,连接OMDN

1)填空:a =

2)求证:四边形MOND是菱形;

3)若FOA的中点,连接EF,且满足EF+OE=9,求四边形MOND的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程的两个解是

(1)求的值;

(2)用含有的代数式表示

(3)若是不小于的负数,求的取值范围.

查看答案和解析>>

同步练习册答案