精英家教网 > 初中数学 > 题目详情
精英家教网如图所示.梯形ABCD中,AD∥BC,M是腰DC的中点,MN⊥AB于N,且MN=b,AB=a.求梯形ABCD的面积.
分析:延长AM交BC延长线上点G,过点G作GH⊥NM,交NM的延长线上于点H,然后将梯形ABCD的面积转化为梯形HGBN的面积,即可求解.
解答:精英家教网解:延长AM交BC延长线上点G,过点G作GH⊥NM,交NM的延长线上于点H,
∵AD∥BC,M是DC中点,
∴△ADM≌△GCM,
∴AM=MG,即点M也是GA的中点,
∵∠H=∠ANM=90°,
∴AB∥HG,
∵点M也是GA的中点,
∴AM=GM,
在△AMN和△GMH中,
∠ANM=∠H
∠AMN=∠GMH
AM=GM

∴△ANM≌△BHG(AAS),
∴MN=MH=b,AN=HG,
∴GH+BN=BN+AN=AB=a,
∴梯形ABCD与梯形HGBN的面积相等,
∵S梯形HGBN=
1
2
(GH+BN)•HN=
1
2
×a×2×b=ab,
∴S梯形ABCD=ab.
点评:本题考查了梯形的知识,难度较大,关键是通过作辅助线,把梯形ABCD的面积转化为梯形HGBN的面积求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线.
求证:四边形EBCD是等腰梯形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=BC=4
3
,求梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,DE∥BC,△ADE和梯形DBCE的面积相等,则AD:DB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解

(1)如图①,△ABC中,D是BC中点,连接AD,直接回答S△ABD与S△ADC相等吗?
相等
相等
(S表示面积);
应用拓展
(2)如图②,已知梯形ABCD中,AD∥BC,E是AB的中点,连接DE、EC,试利用上题得到的结论说明S△DEC=S△ADE+S△EBC
解决问题
(3)现有一块如图③所示的梯形试验田,想种两种农作物做对比实验,用一条过D点的直线,将这块试验田分割成面积相等的两块,画出这条直线,并简单说明另一点的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,直角梯形ABCD中,动点P从B点出发,由B-C-D-A沿梯形的边运动,设点P运动的路程为x,△ABP的面积为y,函数图象如图②所示,则△ABC面积为
16
16

查看答案和解析>>

同步练习册答案