精英家教网 > 初中数学 > 题目详情

已知,直线y=x绕原点O顺时针旋转90°得到直线l,直线l与反比例函数y=数学公式的图象的一个交点为A(3,m),则k=________.

-9
分析:根据直线y=x旋转后得到的直线l:y=-x与反比例函数y=联立即可解得k的值.
解答:直线y=x绕原点O顺时针旋转90°得到直线l:y=-x;
点A(3,m)为直线l与反比例函数的交点,则有
解得
故答案为:-9.
点评:本题主要考查了反比例函数与一次函数的交点问题,以及用待定系数法确定函数的解析式,同学们要熟练掌握这种方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知:如图,点D、E分别为△ABC的边AB、AC的中点,将△ADE绕点D旋转180°至△BDF.
(1)小明发现四边形BCEF的形状是平行四边形,请你帮他把说理过程补齐.
理由是:因为△BDF是由△ADE绕点D旋转180°得到的所以△ADE与△BDF全等且点A、D、B在同一条直线上点E、D、F也在同一条直线上.
所以BF=AE,∠F=∠
AED

可得BF∥
AC

又因为E是AC的中点,所以EC=AE,
所以BF=
EC

因此,四边形BCEF是平行四边形(根据
一组对边平行切相等的四边形是平行四边形

(2)小明还发现在原有的△ABC中添加一个条件后,就可以使四边形BFEC成为一种特殊的平行四边形.你也来试试.
你认为添加条件
∠C=90°
后,四边形BFEC是
矩形
.(友情提示:我们将根据你所提出问题的难易程度,给予不同的分值.)理由是:
有一个角是直角的平行四边形是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=k•AE,AC=k•AD,点M是DE的中点,直线AM交直线BC于点N.
(1)探究∠ANB与∠BAE的关系,并加以证明.
说明:如果你经过反复探索没解决问题,可以从下面①②中选取一个作为已知条件,再完成你的证明,选取①比选原题少得2分,选取②比选原题少得5分.
①如图2,k=1;②如图3,AB=AC.
(2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并直接写出变化后∠ANB与∠BAE的关系.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,正方形ABCD和正方形QMNP,M是正方形ABCD的对称中心,边MN与边AB交于F,边AD与边QM交于E.
(1)在图1中,求证:AE+AF=
2
AM

(2)如图2,若将原题中的“正方形”改为“菱形”,且∠QMN=∠CBA=60°其他条件不变,则在图2中线段AE,AF与MA的关系为
AE+AF=AM
AE+AF=AM

(3)在(2)的条件下,若菱形MNPQ在绕着点M运动的过程中,点E,F分别在边AD,AB所在直线上时,已知菱形ABCD的边长为4,AE=1求△AFM的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,已知AB=4,BD=3,AD=5,以AB所在直线为x轴.以B点为原点建立平面直角坐标系.将平行四边形ABCD绕B点逆时针方向旋转,使C点落在y轴的正半轴上,C、D、A三点旋转后的位置分别是P、Q和T三点.
(1)求证:点D在y轴上;
(2)若直线y=kx+b经过P、Q两点,求直线PQ的解析式;
(3)将平行四边形PQTB沿y轴的正半轴向上平行移动,得平行四边形P′Q′T′B′,Q、T、B依次与点P′、Q′、T′、B′对应).设BB′=m(0<m≤3).平行四边形P′Q′T′B′与原平行四边形ABCD重叠部分的面积为S,求S关于m的函数关系式.精英家教网

查看答案和解析>>

科目:初中数学 来源:2009年江苏省苏州市立达中学中考数学二模试卷(解析版) 题型:解答题

如图,在平行四边形ABCD中,已知AB=4,BD=3,AD=5,以AB所在直线为x轴.以B点为原点建立平面直角坐标系.将平行四边形ABCD绕B点逆时针方向旋转,使C点落在y轴的正半轴上,C、D、A三点旋转后的位置分别是P、Q和T三点.
(1)求证:点D在y轴上;
(2)若直线y=kx+b经过P、Q两点,求直线PQ的解析式;
(3)将平行四边形PQTB沿y轴的正半轴向上平行移动,得平行四边形P′Q′T′B′,Q、T、B依次与点P′、Q′、T′、B′对应).设BB′=m(0<m≤3).平行四边形P′Q′T′B′与原平行四边形ABCD重叠部分的面积为S,求S关于m的函数关系式.

查看答案和解析>>

同步练习册答案