【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
【答案】(1),;(2)当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱..
【解析】
试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;
(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.
试题解析:(1)由题意知:
当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;
∴,;
(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;
令y甲=y乙,即22x=16x+3,解得:x=;
令y甲>y乙,即22x>16x+3,解得:<x≤1.
②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;
令y甲=y乙,即15x+7=16x+3,解得:x=4;
令y甲>y乙,即15x+7>16x+3,解得:0<x<4.
综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.
科目:初中数学 来源: 题型:
【题目】一段时间内,某商场销售某品牌的女装30件,各种尺码的销售量如下表:
尺码(cm) | 155 | 160 | 165 | 170 | 175 |
销售量(件) | 2 | 10 | 12 | 4 | 2 |
则这30件女装尺码的众数和中位数分别是( )
A.175cm,165cm
B.165cm,165cm
C.165cm,175cm
D.165cm,170cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,O是对角线的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,
(1)求证:OE=OF
(2)求 EF的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在做课本“目标与评定”中的一道题:如图1,直线a、b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?
(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);
②说出该画法依据的定理.
(2)小明在此基础上进行了更深入的探究,想到两个操作:
①在图3的画板内,在直线a与直线b上各取一点,使这两点与直线a、b的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分.
②在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线(在画板内的部分),只要求作出图形,并保留作图痕迹.
请你帮小明完成上面两个操作过程.(必须要有方案图,所有的线不能画到画板外,只能画在画板内)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下面表格中的对应值:
x | 3.24 | 3.25 | 3.26 |
ax2+bx+c | ﹣0.02 | 0.01 | 0.03 |
判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是( )
A. x<3.24B. 3.24<x<3.25C. 3.25<x<3.26D. x>3.26
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com