精英家教网 > 初中数学 > 题目详情
23、如图,在Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
(1)求证:MN=AC;
(2)如果把条件“AM=AN”改为“AM⊥AN”,其它条件不变,那么MN=AC不一定成立.如果再改变一个条件,就能使MN=AC成立.请你写出改变的条件并说明理由.
分析:(1)要证MN=AC,只需证四边形ACMN为?,根据定义两组对边分别平行的四边形时平行四边形,而MN∥AC为已知,需证AN∥MC,可利用内错角相等,两直线平行来求.
(2)∵AM⊥AN,且MN∥AC,∴四边形ACMN要为?,还少一组平行,若把M看做时RT△ABC斜边高的垂足,则可证明CM∥AN,即可利用平行四边形的定义证明.
解答:证明:(1)【方法一】如图,连接CM.
在Rt△ABC中,∠C=90°,M是AB的中点,
∴CM=AM.
∴∠MAC=∠MCA.
∵AM=AN,
∴∠AMN=∠ANM.
∵MN∥AC,
∴∠CAM=∠AMN.
∴∠ACM=∠ANM.
∴∠CMA=∠MAN.
∴AN∥CM.
∴四边形ACMN是平行四边形.
∴MN=AC.
【方法二】如图,连接CM,
证△ACM≌△MNA.
∴MN=AC.
(2)把“M是AB的中点”改为“过C点作AB的垂线,垂足为M点”.
理由是:易知CM∥AN,又MN∥AC,有四边形ACMN是平行四边形.
(注:改“Rt△ABC”为“等腰Rt△ABC”,酌情给分)
点评:此题主要考查了平行四边形的定义以及判定,难易程度适中.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案