精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线C1:y1=tx2﹣1(t>0)和抛物线C2:y2=﹣4(x﹣h)2+1(h≥1).

(1)两抛物线的顶点A、B的坐标分别为
(2)设抛物线C2的对称轴与抛物线C1交于点N,则t为何值时,A、B、M、N为顶点的四边形是平行四边形.
(3)设抛物线C1与x轴的左交点为点E,抛物线C2与x轴的右边交点为点F,试问,在第(2)问的前提下,四边形AEBF能否为矩形?若能,求出h值;若不能,说明理由.

【答案】
(1)(0,1);(h,1)
(2)

解:∵AM∥BN,

∴当AM=BN时,A、B、M、N为顶点的四边形是平行四边形,

∵当x=h时,y1=1,y2=tx2﹣1=th2﹣1,

∴PN=|1﹣(th2﹣1)\=|2﹣th2|.

①当点B在点A的下方时,4h2﹣2=th2﹣2,∵h2≠0,∴t=4;

②当点B在点A的上方时,4h2﹣2=2﹣th2,整理,得t+4=

∵t>0时,t+4>4;当h≥1时, ≤4,

∴这样的t值不存在,

答:当点B在点A的下方时,t=4,当点B在点A的上方时不存在


(3)

解:由(2)可知,二次项系数互为相反数,

∴两抛物线的形状相同,故它们成中心对称,

∵点A和点B的纵坐标的绝对值相同,

∴两抛物线得对称中心落在x轴上.

∵四边形AEBF是平行四边形,

∴当∠EAF=90°时,四边形AFBE是矩形,

∵抛物线C1与x轴左交点坐标是(﹣ ,0),

∴OE=

∵抛物线C2与x轴右交点坐标是(h+ ,0)且h≥1,

∴OF=h+

∵∠FAO+∠EAO=90°,∠EAO+AEO=90°,

∴∠FAO=∠AEO,

又∵∠FOA=∠EOA=90°,

∴△AEO∽△FAO, =

∴OA2=OEOF,即 (h+ )=1,解得h= >1,

∴四边形AEBF能为矩形,且h的值为


【解析】解:(1)抛物线C1:y1=tx2﹣1的顶点坐标是(0,﹣1),
抛物线C2:y2=﹣4(x﹣h)2+1的顶点坐标是(h,1),
所以答案是:(0,﹣1),(h,1);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知BD平分∠ABF,且交AE于点D.

(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);

(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ab是新规定的一种运算法则:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

(1)求(﹣3)5的值;

(2)若(﹣2)x=6,求x的值;

(3)若3(2x)=﹣4+x,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】振兴中学某班的学生对本校学生会倡导的抗震救灾,众志成城自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为34586,又知此次调查中捐款25元和30元的学生一共42.

(1)他们一共调查了多少人?

(2)这组数据的众数、中位数各是多少?

(3)若该校共有1560名学生,估计全校学生捐款多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的周长是20,三边分别为a,b,c.

(1)若b是最大边,求b的取值范围;

(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c均为整数,求△ABC的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形CGEF的边长分别是3和5,且点B、C、G在同一直线上,M是线段AE的中点,连接MF,则MF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了名学生;
(2)补全条形统计图,并求出扇形统计图中选择篮球项目的人数所在扇形的圆心角的度数;
(3)若该学校有1200人,则该学校选择足球项目的学生人数约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△AOD是等腰直角三角形,AB=ACAO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,BOC=130°.

(1)求证:OB=DC

(2)求DCO的大小;

(3)设AOB=α,那么当α为多少度时,△COD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象经过点A(﹣ ,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是 ,设Q点的纵坐标为n,求n2﹣2 n+9的值.

查看答案和解析>>

同步练习册答案