精英家教网 > 初中数学 > 题目详情

【题目】某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.

(1)该公司在全市一共投放了 万辆共享单车;

(2)在扇形统计图中,B区所对应扇形的圆心角为 °;

(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.

【答案】(1)4;(2)36 ;(3)C区共享单车的使用量为0.7万辆,图见解析.

【解析】试题分析:1)根据D区投放量除以占的百分比,求出总量数;

2先求出C区所占的百分比,再求出B区所占的百分比,最后乘以360°

3求出共享单车的使用量,减去其余各区的就可求出C区共享单车的使用量

试题解析:

1

2

3

4×85%0.80.30.90.70.7(万辆)

答: C区共享单车的使用量为0.7万辆.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.
(1)小明诵读《论语》的概率是
(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2 ,反比例函数y= (x>0)的图象经过OA的中点C,交AB于点D.
(1)求反比例函数的关系式;
(2)连接CD,求四边形CDBO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2的形状拼成一个正方形.

图2的阴影部分的正方形的边长是______.

用两种不同的方法求图中阴影部分的面积.

(方法1)= ____________

(方法2)= ____________

(3) 观察图2,写出(a+b)2,(a-b)2,ab这三个代数式之间的等量关系;

根据题中的等量关系,解决问题:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.

评估成绩n(分)

评定等级

频数

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根据以上信息解答下列问题:

(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

如图,在平面直角坐标系中,若已知点A(xA,yA)和点C(xC,yC),点M为线段AC的中点,利用三角形全等的知识,有△AMP≌△CMQ,则有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,从而有,即中点M的坐标为().

基本知识:

(1)如图,若A、C点的坐标分别A(﹣1,3)、C(3,﹣1),求AC中点M的坐标;

方法提炼:

(2)如图,在平面直角坐标系中,ABCD的顶点A、B、C的坐标分别为(﹣1,5)、(﹣2,2)、(3,3),求点D的坐标;

(3)如图,点A是反比例函数y=(x>0)上的动点,过点A作ABx轴,ACy轴,分别交函数y(x>0)的图象于点B、C,点D是直线y=2x上的动点,请探索在点A运动过程中,以A、B、C、D为顶点的四边形能否为平行四边形,若能,求出此时点A的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分
别在边AD、AB、BC、CD上,则tan∠DEH=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,APD的面积为y.(当点P与点AD重合时,y=0)

(1)写出yx之间的函数解析式;

(2)画出此函数的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.

(1)求购买1块电子白板和一台笔记本电脑各需多少元?

(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?

(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?

查看答案和解析>>

同步练习册答案