精英家教网 > 初中数学 > 题目详情

已知,如图,抛物线的顶点为C(1,-2),直线y=kx+m与抛物线交于A、B两点,其中OA=3,B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.
(1)求直线AB的解析式;
(2)设点P的横坐标为x,求点E坐标(用含x的代数式表示);
(3)点D是直线AB与这条抛物线对称轴的交点,是否存在点P,使得以点P、E、D为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在请说明理由.

解:(1)解:(1)设二次函数的解析式为y=a(x-1)2-2,
∵A(3,0)在抛物线上,
∴0=a(3-1)2-2
∴a=
∴y=(x-1)2-2,
当x=0时,y=-
∴B(0,-),
∴设直线AB的解析式为y=kx+b,
把点A、B的坐标代入解析式得:

解得:
∴直线AB的解析式为y=x-

(2)∵P为线段AB上的一个动点,PE⊥x轴,且P点横坐标为x,
∴E点横坐标为x,
∵E在抛物线上,
∴E点坐标为(x,(x-1)2-2);

(3)D点在抛物线y=(x-1)2-2的对称轴上,横坐标为1,
又∵D点直线AB上,
∴D的坐标为:D(1,-1),
①当∠DEP=90°时,如图,△AOB∽△EDP,
=
过点D作DQ⊥PE于Q,
∴xQ=xP=x,yQ=-1,
∴△DQP∽△AOB∽△EDP,
=
又OA=3,OB=,AB=
又DQ=x-1,
∴DP=(x-1),
==,
解得:x=-1±(负值舍去).
∴P(-1,)(如图中的P1点);
②当∠DEP=90°时,△AOB∽△DEP,
=
由(2)PE=-x2+x,DE=x-1,
=
解得:x=1±,(负值舍去).
∴P(1+-1)(如图中的P2点);
综上所述,P点坐标为(1+-1)或(-1,).
分析:(1)首先设二次函数的解析式为y=a(x-1)2-2,由A点坐标为(3,0),则可将A点的坐标代入函数解析式,利用待定系数法即可求得这个二次函数的解析式,当x=0时求出点C的坐标,设直线AB的解析式为y=kx+b,把点A、B的坐标代入解析式,求出k,b的值即可得出AB的解析式;
(2)根据点横坐标为x,且PE⊥x轴,可得E点横坐标为x,又知E点在抛物线上,代入x即可得出E点坐标;
(3)分别从当∠EDP=90°时,△AOB∽△EDP与当∠DEP=90°时,△AOB∽△DEP两种情况去分析,注意利用相似三角形的对应边成比例等性质,即可求得答案,注意不要漏解.
点评:此题考查了待定系数法求函数的解析式,相似三角形的判定与性质等知识.此题综合性很强,解题的关键是方程思想,分类讨论思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)已知,如图,抛物线的顶点为C(1,-2),直线y=kx+m与抛物线交于A、B两点,其中OA=3,B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.
(1)求直线AB的解析式;
(2)设点P的横坐标为x,求点E坐标(用含x的代数式表示);
(3)点D是直线AB与这条抛物线对称轴的交点,是否存在点P,使得以点P、E、D为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年浙江省丽水市实验学校九年级(上)第四次月考数学试卷(解析版) 题型:解答题

已知:如图,抛物线的图象与x轴分别交于A,B两点,与y轴交于C点,⊙M经过原点O及点A,C,点D是劣弧OA上一动点(D点与A,O不重合),直线AG切⊙M点A.
(1)求抛物线的顶点E的坐标;
(2)求直线AG的函数解析式;
(3)点D为弧AO的中点,CD交AO于点F,延长CD交AG于点G,求FG的长.

查看答案和解析>>

科目:初中数学 来源:2010年上海市闸北区中考数学二模试卷(解析版) 题型:解答题

(2010•闸北区二模)已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

同步练习册答案