精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠C90°,∠B60°,在AC边上取点O画圆,使⊙O经过AB两点,下列结论中:①AOBC;②AO2CO;③延长BC交⊙OD,则ABD是⊙O的三等分点;④以O为圆心,以OC为半径的圆与AB相切.正确的序号是______.

【答案】.②③④

【解析】

连接OB,可得∠ABO30°,则∠OBC30°,根据三角函数cosOBC,则BCOB,根据直角三角形的性质得OCOBOA,根据垂径定理,得直线AC是弦BD的垂直平分线,则点ABD将⊙O的三等分,因为点O在∠ABC的角平分线上,所以点O到直线AB的距离等于OC的长.

解:连接OB

OAOB

∴∠A=∠ABO

∵∠C90°,∠ABC60°

∴∠ABO=∠A30°

∴∠OBC30°

cosOBC

BCOB

BCOA

故①错误,

∵∠OBC30°

OCOBOA

OA2OC

故②正确;

延长BC交⊙OD

ACBD

ADAB

∴△ABD为等边三角形,

∴点ABD将⊙O的三等分;

故③正确;

∵∠ABO=∠OBC30°

∴点O在∠ABC的角平分线上,

∴点O到直线AB的距离等于OC的长,

即以O为圆心,以OC为半径的圆与AB相切.

故④正确.

故答案为:②③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+4x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.

(1)求抛物线的解析式;

(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;

(3)在(2)的结论下,过点Ey轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于去分母可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.

转化的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)问题:方程x3+x2-2x=0的解是x1=0,x2=x3=

(2)拓展:用转化思想求方程的解;

(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形的一条边,将矩形折叠,使得顶点落在边上的点处. 如图,已知折痕与边交于点,连结.

1)求证:

2)若,求边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小李驾驶小汽车匀速地从A地行驶到B地,行驶里程为360千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.

1)求v关于t的函数表达式(不用写取值范围);

2)小李上午8点驾驶小汽车从A地出发.

①小李需在当天12点至13点间到达B地,求小汽车行驶速度v的范围.

②小李能否在当天1130分前到达B地?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠C90°AB8,点OAB的中点.将一个边长足够大的RtDEF的直角顶点E放在点O处,并将其绕点O旋转,始终保持DEAC边交于点GEFBC边交于点H.

(1)当点GAC边什么位置时,四边形CGOH是正方形.

(2)等腰直角三角ABC的边被RtDEF覆盖部分的两条线段CGCH的长度之和是否会发生变化,如不发生变化,请求出CGCH之和的值:如发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象经过(﹣10),(30),(1,﹣5)三点.

1)求该二次函数的解析式;

2)求该图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】城市中“打车难”一直是人们关注的一个社会热点问题.近几年来,“互联网+”战略与传统出租车行业深度融合,“优步”、“滴滴出行”等打车软件就是其中典型的应用,名为“数据包络分析”(简称DEA)的一种效率评价方法,可以很好地优化出租车资源配置,为了解出租车资源的“供需匹配”,北京、上海等城市对每天24个时段的DEA值进行调查,调查发现,DEA值越大,说明匹配度越好.在某一段时间内,北京的DEAy与时刻t的关系近似满足函数关系(a,b,c是常数,且≠0),如图记录了3个时刻的数据,根据函数模型和所给数据,当“供需匹配”程度最好时,最接近的时刻t是(

A. 4.8 B. 5 C. 5.2 D. 5.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在AOB中,∠AOB90°,点A的坐标为(21),BO2,反比例函数y的图象经过点B,则k的值为(  )

A.2B.4C.4D.8

查看答案和解析>>

同步练习册答案