精英家教网 > 初中数学 > 题目详情
精英家教网如图,在⊙M中,
AB
所对的圆心角为120°,已知圆的半径为2cm,并建立如图所示的直角坐标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)点D是弦AB所对的优弧上一动点,求四边形ACBD的最大面积;
(4)在(2)中的抛物线上是否存在一点P,使△PAB和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.
分析:(1)连接AM,在直角△AMO中,根据三角函数就可以求出OM,就可以得到M的坐标.
(2)根据三角函数就可以求出A,B的坐标,抛物线经过点A、B、C,因而M一定是抛物线的顶点.根据待定系数法就可以求出抛物线的解析式.
(3)四边形ACBD的面积等于△ABC的面积+△ABP的面积,△ABC的面积一定,△ABP中底边AB一定,P到AB的距离最大是三角形的面积最大,即当P是圆与y轴的交点时面积最大.
(4)△PAB和△ABC相似,根据相似三角形的对应边的比相等,就可以求出P点的坐标.
解答:精英家教网解:(1)如图(1),
连接MA、MB,
则∠AMB=120°,
∴∠CMB=60°,∠OBM=30度.(2分)
∴OM=
1
2
MB=1,
∴M(0,1).(3分)

(2)由A,B,C三点的特殊性与对称性,知经过A,B,C三点的抛物线的解析式为y=ax2+c.(4分)
∵OC=MC-MO=1,OB=
MB2-OM2
=
3

∴C(0,-1),B(
3
,0).(5分)
∴c=-1,a=
1
3

∴y=
1
3
x2-1.(6分)

(3)∵S四边形ACBD=S△ABC+S△ABD,又S△ABC与AB均为定值,(7分)
∴当△ABD边AB上的高最大时,S△ABD最大,此时点D为⊙M与y轴的交点,如图(1).(8分)
∴S四边形ACBD=S△ABC+S△ABD=
1
2
AB•OC+
1
2
AB•OD
=
1
2
AB•CD
=4
3
cm2.(9分)

(4)方法1:
如图(2),精英家教网
∵△ABC为等腰三角形,∠ABC=30°,
AB
BC
=
3

∴△ABC∽△PAB等价于∠PAB=30°,PB=AB=2
3
,PA=
3
PB=6.(10分)
设P(x,y)且x>0,则x=PA•cos30°-AO=3
3
-
3
=2
3
,y=PA•sin30°=3.(11分)
又∵P(2
3
,3)的坐标满足y=
1
3
x2-1,
∴在抛物线y=
1
3
x2-1上,存在点P(2
3
,3),
使△ABC∽△PAB.
由抛物线的对称性,知点(-2
3
,3)也符合题意.
∴存在点P,它的坐标为(2
3
,3)或(-2
3
,3).(12分)
说明:只要求出(2
3
,3),(-2
3
,3),无最后一步不扣分.下面的方法相同.
方法2:
如图(3),
当△ABC∽△PAB时,∠PAB=∠BAC=30°,又由(1)知∠MAB=30°,
∴点P在直线AM上.
设直线AM的解析式为y=kx+b,
将A(-
3
,0),M(0,1)代入,
解得
k=
3
3
b=1
精英家教网
∴直线AM的解析式为y=
3
3
x+1.(10分)
解方程组
y=
3
3
x+1
y=
1
3
x2-1

得P(2
3
,3).(11分)
又∵tan∠PBx=
3
2
3
-
3
=
3

∴∠PBx=60度.
∴∠P=30°,
∴△ABC∽△PAB.
∴在抛物线y=
1
3
x2-1上,存在点(2
3
,3),使△ABC∽△PAB.
由抛物线的对称性,知点(-2
3
,3)也符合题意.
∴存在点P,它的坐标为(2
3
,3)或(-2
3
,3).(12分)
方法3:
如图(3),
∵△ABC为等腰三角形,且
AB
BC
=
3

设P(x,y),则△ABC∽△PAB等价于PB=AB=2
3
,PA=
3
AB=6.(10分)
当x>0时,得
(x-
3
)
2
+y2
=2
3
(x+
3
)
2
+y2
=6

解得P(2
3
,3).(11分)
又∵P(2
3
,3)的坐标满足y=
1
3
x2-1,
∴在抛物线y=
1
3
x2-1上,存在点P(2
3
,3),使△ABC∽△PAB.
由抛物线的对称性,知点(-2
3
,3)也符合题意.
∴存在点P,它的坐标为(2
3
,3)或(-2
3
,3).(12分)
点评:本题主要考查了待定系数法求函数的解析式.并且本题考查了相似三角形的对应边的比相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.
求证:BF=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠EDC=33°,则∠DAE的度数为
72
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=BC,∠ABC=90°,D是BC的中点,且它关于AC的对称点是D′,BD′=
5
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,D点是BC的中点,DE⊥AB于E点,DF⊥AC于F点,则图中全等三角形共有
3
3
对.

查看答案和解析>>

同步练习册答案