精英家教网 > 初中数学 > 题目详情
17.若记y=f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,其中f(1)表示当x=1时y的值,即f(1)=$\frac{{1}^{2}}{1+{1}^{2}}$=$\frac{1}{2}$;
f($\frac{1}{2}$)表示当x=$\frac{1}{2}$时y的值,即f($\frac{1}{2}$)=$\frac{(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=$\frac{1}{5}$…;
则f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2016)+f($\frac{1}{2016}$)=2015.5.

分析 先根据已知的y代入计算求出f(2)、f(3)、f($\frac{1}{3}$),发现f(2)+f($\frac{1}{2}$)=$\frac{4}{5}$+$\frac{1}{5}$=1,f(3)+f($\frac{1}{3}$)=$\frac{9}{10}$+$\frac{1}{10}$=1,…,f(2016)+f($\frac{1}{2016}$)=1;一共有2015个1,由此可以得出结果.

解答 解:∵f(1)=$\frac{{1}^{2}}{1+{1}^{2}}$=$\frac{1}{2}$;
f(2)=$\frac{{2}^{2}}{1+{2}^{2}}$=$\frac{4}{5}$,f($\frac{1}{2}$)=$\frac{(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=$\frac{1}{5}$;
f(3)=$\frac{{3}^{2}}{1+{3}^{2}}$=$\frac{9}{10}$,f($\frac{1}{3}$)=$\frac{(\frac{1}{3})^{2}}{1+(\frac{1}{3})^{2}}$=$\frac{1}{10}$…
∴f(2)+f($\frac{1}{2}$)=$\frac{4}{5}$+$\frac{1}{5}$=1,f(3)+f($\frac{1}{3}$)=$\frac{9}{10}$+$\frac{1}{10}$=1,…,f(2016)+f($\frac{1}{2016}$)=1;
则f(1)+f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2016)+f($\frac{1}{2016}$),
=$\frac{1}{2}$+1+1+…+1,
=$\frac{1}{2}$+2015,
=2015.5,
故答案为:2015.5.

点评 本题既是求函数值问题,也是找规律问题,是数字类变化规律;此类题的解题思路为:根据已知所给式子,依次从1开始求值,并认真观察,总结规律,注意每个结果之间的关系;如果看不出来,尽量多计算几个函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知函数y=$\frac{k}{2}$xk-2是关于x的二次函数
(1)求满足条件的k的值;
(2)k为何值时,函数有最大值?最大值为多少?当x为何值时,y随x的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2-ab-bc-ac=$\frac{1}{2}$[(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你检验这个等式的正确性;
(2)若a=2012,b=2013,c=2014,你能很快求出a2+b2+c2-ab-bc-ac的值吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.观察下列各式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;

(1)根据上面各式的规律可得:(x-1)(xn+xn-1+…+x+1)=xn+1-1(其中n是正整数)
(2)运用以上规律:计算:1+2+22+23+…+210的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,梯形ABCD中,AB∥CD,AB=m,CD=n,E、F分别是AB、CD的中点,AF、ED相交于点G,BF、CE相交于点H,则GH=$\frac{mn}{m+n}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,AB是半圆的直径,点D是$\widehat{BC}$的中点,且AB=4,∠BAC=50°,则AD的长度为$\frac{13}{9}$πcm(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在正方形ABCD中,分别以AD,BC为斜边作Rt△ADE和Rt△CBF,且Rt△ADE≌Rt△CBF,连结EF,若S正方形ABCD=20,S△ADE=3,则EF=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某地拟召开一场安全级别较高的会议,预估将有4000至7000名人员参加会议,为了确保会议的安全,会议组委会决定对每位入场人员进行安全检查,现了解到安检设备有门式安检仪和手持安检仪两种:门式安检仪每台3000元,需安检员2名,每分钟可通过10人;手持安检仪每只500元,需安检员1名,每分钟可通过2人,该会议中心共有6个不同的入口,每个入口都有5条通道可供使用,每条通道只可安放一台门式安检仪或一只手持安检仪,每位安检员的劳务费用均为200元.(安检总费用包括安检设备费用和安检员的劳务费用)
现知道会议当日人员从上午9:00开始入场,到上午9:30结束入场,6个入口都采用相同的安检方案,所有人员须提前到达并根据会议通知从相应入口进入
(1)如果每个入口处,只有2个通道安放门式安检仪,而其余3个通道均为手持安检仪,在这个安检方案下,请问:在规定时间内可通过多少名人员?安检所需要的总费用为多少元?
(2)请你设计一个安检方案,确保安检工作的正常进行,同时使得安检所需要的总费用尽可能少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.
(1)求证:OE=OF;
(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

查看答案和解析>>

同步练习册答案