精英家教网 > 初中数学 > 题目详情
设x为实数,[x]表示不大于x的最大整数,如[π]=3, [-1.3]=-2, [
12
]=0
,则使[|x-1|]=2成立的x的取值范围是
 
分析:首先根据取整函数的定义可得:2≤|x-1|<3,然后解此不等式即可求得答案.
解答:解:∵[|x-1|]=2,
∴2≤|x-1|<3,
∴2≤x-1<3或-3<x-1≤-2,
∴3≤x<4或-2<x≤-1,
∴使[|x-1|]=2成立的x的取值范围是:3≤x<4或-2<x≤-1.
故答案为:3≤x<4或-2<x≤-1.
点评:此题考查了取整函数的性质与含绝对值的不等式的求解方法.解题时要注意[x]≤x<[x]+1的应用,题目难度适中,解题时要细心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某商场出售一批进价为2元的贺卡,在市场营销中发现,此商品的日销售单价x(单位:元)与日销售数量y(单位:张)之间有如下关系:
销售单价x(元) 3 4 5 6
日销售量y(元) 20 15 12 10
(1)根据表中数据在平面直角坐标系中描出实数对(x,y)的对应点;
(2)确定y与x之间的函数关系式,并画出图象;
(3)设销售此贺卡的日纯利润为w元,试求出w与x之间的函数关系式.若物价局规定该贺卡售价最高不超过10元/张,请你求出日销售单价x定为多少元时,才能获得最大日销售利润?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某商场经营一批进价为2元一件的小商品,在市场营销中发现此商品的日销售单价x元与日销售量y件之间有如下关系:
x 3 5 9 11
y 18 14 6 2
(1)在直角坐标系中
①根据表中提供的数据描出实数对(x,y)的对应点;
②猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.并说明当x≥12时对应图象的实际意义.
(2)设经营此商品的日销售利润(不考虑其他因素)为 P元,根据日销售规律:
①试求日销售利润P元与日销售单价x元之间的函数关系式;
②当日销售单价x为多少元时,才能获得最大日销售利润?试问日销售利润P是否存在最小值?若有,试求出,并说明其实际意义;若无,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司新进一批商品,每件商品进价2000元,为了解该商品的销售情况,公司统计了该商品一段时间内日销售单价x(千元)和日销售y件)的数据如下:
x (千元) 2.5   3  3.5  4  5
 y(件)  20  18  16  14 10 
(I)在所给的直角坐标系中
①据表中提供的数据描出实数对(x,y);
②根据①,猜测并确定日销售量y(件)与日销售单价x(千元)之间的函数关系式;
(II)设日销售利润L千元(利润=收入-成本,其他因素不考虑),写出L与x的函数关系式,并回答:当x为何值时,日销售利润L有最大值,最大值是多少?日销售利润L有最小值吗?如果有,是多少?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

27、某商场经营一批进价为2元一件的小商品,在市场营销中发现下商品的日销售单价x元与日销售量y件之间有如下关系:
x 3 5 9 11
y 18 14 6 2
(1)在所给的直角坐标系①中
1)根据表中提供的数据描出实数对(x,y)的对应点;
2)猜测并确定日销售量y件与日销售单价x元之间的函数关系式,并画出图象.
(2)设经营此商品的日销售利润(不考虑其他因素)为P元,根据日销售规律:
1)试求日销售利润P元与日销售单价x元之间的函数关系式,并求出日销售单价x为多少时,才能获得最大日销售利润.试问日销售利润P是否存在最小值?若有,试求出,若无,请说明理由.
2)在给定的直角坐标系(图2)中,画出日销售利润P元与日销售单价x元之间的函数图象的简图.观察图象,写出x与P的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(1)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-
b
a
,x1•x2=
c
a

根据该材料:已知x1、x2是方程x2+6x+3=0的两实数根,求
x2
x1
+
x1
x2
的值.
(2)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x 0 1 2 3
y 5 2 1 2
点A(x1,y1)、B(x2,y2)在函数的图象上,当0<x1<1,2<x2<3时,试判断y1与y2的大小关系.

查看答案和解析>>

同步练习册答案