分析 连结AC交BD于O点,如图,根据矩形的性质得OA=OC,再利用等角的补角相等,由∠AED=∠CED得到∠AEO=∠CEO,则可判断△AEC为等腰三角形,所以OE⊥AC,然后根据对角线互相垂直的矩形为正方形得到结论.
解答
证明:连结AC交BD于O点,如图,
∵四边形ABCD是矩形,
∴OA=OC,
∵∠AED=∠CED,
∴∠AEO=∠CEO,
∴△AEC为等腰三角形,
∴OE⊥AC,
即AC⊥BD,
∴AC和BD互相垂直平分,
∴四边形ABCD为菱形,
而∠ABC=90°,
∴四边形ABCD是正方形.
点评 本题考查了正方形的判定:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com