精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AD=BD,AE=CE.求证:DE∥BC,数学公式

证明:
延长DE到Q,使DE=EQ,连接CQ,
∵AE=EC,∠AED=∠CEQ,DE=EQ,
∴△ADE≌△CQE,
∴AD=CQ,∠A=∠ACQ,
∴AB∥CQ,
∵AD=BD,
∴BD=CQ,
∴四边形DBCQ是平行四边形,
∴DQ=BC,DQ∥BC,
∴DE∥BC,DE=BC.
分析:延长DE到Q,使DE=EQ,连接CQ,根据SAS证△ADE≌△CQE,推出AD=CQ,∠A=∠ACQ,推出平行四边形DQCB,得出DQ=BC,DQ∥BC,即可推出答案.
点评:本题主要考查对平行四边形的性质和判定,平行线的判定,全等三角形的性质和判定,三角形的中位线等知识点的理解和掌握,能证出四边形DQCB是平行四边形是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案