精英家教网 > 初中数学 > 题目详情
5.如图,在△ABC中,AB=AC,AD是△ABC的中线,E是AC的中点,连接DE,DF⊥AB于F.求证:
(1)∠B=∠EDC;
(2)∠BDF=∠ADE.

分析 (1)根据等腰三角形的性质得到∠BAD=∠CAD,∠ADB=∠ADC=90°,即可得到结论;
(2)根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.

解答 证明:(1)∵AB=AC,
∴∠B=∠C,
∵AD是△ABC点的中线,
∴∠ADB=∠ADC=90°,
∵E是AC的中点,
∴DE=AE=EC,
∴∠C=∠EDC,
∴∠B=∠EDC;

(2)∵AE=DE,
∴∠CAD=∠ADE.
在Rt△ABD中,∠ADB=90°,
∴∠B+∠BAD=90°.
∵DF⊥AB,
∴∠B+∠BDF=90°,
∴∠BAD=∠BDF,
∴∠BDF=∠CAD,
∴∠BDF=∠ADE.

点评 本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.某零件厂准备生产2000个零件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入了该零件的生产,乙车间每天生产的零件是甲车间的1.5倍,结果用14天完成了任务,甲车间每天生产零件多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.
(1)求证:△AGE≌△ECF;
(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与BG的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图所示,PA、PB分别切⊙O于A、B两点,AB交OP于M,N为PM的中点,NT切⊙O于T点,求证:NT=NP.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.据报道2016年9月12日有一个熊孩子把34楼的啤酒瓶搬到28楼然后扔下去,所幸并没有人员伤亡,熊孩子也被家长打的屁股开花;据研究从高空抛物时间t和高度h近似的满足公式t=$\sqrt{\frac{2h}{10}}$(不考虑风速的影响).
(1)从50米高空抛物到落地所需时间t1的值是多少?
(2)从100米高空抛物到落地所需时间t2的值是多少?(求t的值)
(3)t2是t1的多少倍?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知△ABC中,∠C=90°,AC=8cm,AB=17cm.
(1)尺规作图:在BC上作出一点D,使得DA=DB.(不写作法,保留作图痕迹) 
(2)连接DA.求△ACD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足为D,E,
(1)求证:△ACE≌△BAD;
 (2)若BD=3,CE=2,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,BC是圆O的直径,点A、F在圆O上,连接AB、BF.
(1)如图1,若点A、F把半圆三等分,连接OA,OA与BF交于点E.求证:E为OA的中点;
(2)如图2,若点A为弧$\widehat{BF}$的中点,过点A作AD⊥BC,垂足为点D,AD与BF交于点G.求证:AG=BG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.比较下列各组数的大小:
(1)$\frac{\sqrt{3}-1}{2}$与$\frac{1}{2}$;
(2)$\sqrt{7}$-$\sqrt{2}$与$\sqrt{5}$-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案