精英家教网 > 初中数学 > 题目详情

已知直角梯形ABCD中,∠DAB=∠B=90°,AD=4,DC=BC=8,将四边形ABCD折叠,使A与C重合,HK为折痕,则CH=________,AK=________.

7    5.6
分析:过点D作DE⊥BC于E,可得四边形ABED是矩形,根据矩形的对边相等求出BE=AD=4,然后求出CE=4,再根据直角三角形30°所对的直角边等于斜边的一半求出∠CDE=30°,再根据勾股定理列式求出DE,即可得到AB,设CH=x,根据翻折变换可得AH=CH=x,表示出BH=8-x,然后在Rt△ABH中,利用勾股定理列式计算即可求出x;过点K作KF⊥AD的延长线于F,得到∠DKF=∠CDE=30°,设KD=2y,表示出DF=y,KF=y,再表示出AK、AF,然后在Rt△AKF中,利用勾股定理列式计算即可求出y,从而得解.
解答:如图,过D点作DE⊥BC于E,
∵∠DAB=∠B=90°,
∴四边形ABED是矩形,
∴BE=AD=4,
∵BC=8,
∴CE=BC-BE=8-4=4,
又∵CD=8,
∴CD=2CE,
∴∠CDE=30°,
∴DE===4
∴AB=DE=4
设CH=x,根据翻折变换可得AH=CH=x,
∴BH=8-x,
在Rt△ABH中,AB2+BH2=AH2
即(42+(8-x)2=x2
x=7,
即CH=7;
过点K作KF⊥AD的延长线于F,则DE∥KF,
∴∠DKF=∠CDE=30°,
设KD=2y,则DF=KD=y,KF===y,
∴AF=AD+DF=4+y,CK=DC-KD=8-2y,
根据翻折的性质,AK=CK=8-2y,
在Rt△AFK中,AF2+KF2=AK2
即(4+y)2+(y)2=(8-2y)2
解得y=1.2,
∴AK=8-2×1.2=8-2.4=5.6.
故答案为:7;5.6.
点评:本题考查了翻折变换的性质,主要利用了矩形的判定与性质,勾股定理的应用,直角三角形30°角所对的直角边等于斜边的一半的性质,本题难点在于作辅助线,构造出直角三角形,并把相应的线段转化为直角三角形的边是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△A精英家教网PD中边AP上的高为(  )
A、
2
17
17
B、
4
17
17
C、
8
17
17
D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则PA+PD的最小值为
2
17
2
17

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•辽阳)已知直角梯形ABCD,AB∥CD,∠C=90°,AB=BC=
12
CD,E为CD的中点.
(1)如图(1)当点M在线段DE上时,以AM为腰作等腰直角三角形AMN,判断NE与MB的位置关系和数量关系,请直接写出你的结论;
(2)如图(2)当点M在线段EC上时,其他条件不变,(1)中的结论是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角梯形ABCD如图放置在平面直角坐标系中,∠DCB=30°,AB边在y轴上,点D的横坐标为6,CQ⊥x轴,垂足为Q,点Q的横坐标为12,过CD的直线l交x轴于点E,E点坐标为(18,0).
(1)求直线l的解析式,以及点A和点B的坐标;
(2)P为线段CD上一动点,连结PQ、OP,探究△POQ的周长,并求出当周长最小时,P的坐标及此时的该三角形的周长;
(3)点N从点Q(12,0)出发,沿着x轴以每秒1个单位长度的速度向点O运动,同时另一动点M从点B开始沿B-C-D-A的方向绕梯形ABCD运动,运动速度为每秒为2个单位长度,当其中一个点到达终点时,另一点也停止运动,设运动时间为t秒,连结MO和MN,试探究当t为何值时MO=MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,点P从A点出发,沿AD边以1的速度向点D运动,点Q从点C开始沿CB边以3的速度向点B运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t.
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,四边形PQCD为等腰梯形?

查看答案和解析>>

同步练习册答案