| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 由正方形的性质得出AB=BC=CD=AD,∠A=∠B=∠D=90°,设AF=a,则BF=3a,AB=BC=CD=AD=4a,证出AE:DE=AE:CD,即可得出①正确;
先证出∠CEF=90°,由勾股定理求出EF=$\sqrt{5}$a,CE=2$\sqrt{5}$a,得出EF:CE=DE:CD,证出△CEF∽△CDE,得出∠FCE=∠DCE,得出CE平分∠DCF,②正确;
由∠B+∠CEF=180°,得出B、C、E、F四个点在同一个圆上,③正确;
由△DCE是直角三角形,得出外接圆的圆心是斜边CE的中点,CE是直径,由EF⊥CE,得出直线EF是△DCE的外接圆的切线,④正确.
解答 解:∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠A=∠B=∠D=90°,
∵E是AD的中点,
∴AE=DE,
∵BF=3AF,
设AF=a,则BF=3a,AB=BC=CD=AD=4a,
∵AF:DE=1:2,AE:CD=1:2,
∴AE:DE=AE:CD,
∴△AEF∽△DCE,
∴①正确;∠AEF=∠DCE,
∵∠DEC+∠DCE=90°,
∴∠AEF+∠DEC=90°,
∴∠CEF=90°,
∵EF=$\sqrt{{a}^{2}+(2a)^{2}}$=$\sqrt{5}$a,CE=$\sqrt{(2a)^{2}+(4a)^{2}}$=2$\sqrt{5}$a,
∴EF:CE=1:2=DE:CD,
∴△CEF∽△CDE,
∴∠FCE=∠DCE,
∴CE平分∠DCF,
∴②正确;
∵∠B=90°,∠CEF=90°,
∴∠B+∠CEF=180°,
∴B、C、E、F四个点在同一个圆上,
∴③正确;
∵△DCE是直角三角形,
∴外接圆的圆心是斜边CE的中点,CE是直径,
∵∠CEF=90°,
∴EF⊥CE,
∴直线EF是△DCE的外接圆的切线,
∴④正确,
正确的结论有4个.故选:D.
点评 本题是四边形综合题目,考查了正方形的性质、相似三角形的判定与性质、勾股定理、四点共圆等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x=-$\frac{1}{4}$ | B. | x=4 | C. | x=$\frac{1}{4}$ | D. | x=-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{8}$-$\sqrt{3}$=$\sqrt{5}$ | B. | b2•b3=b6 | C. | 4a-9a=-5 | D. | (ab2)2=a2b4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com