8£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬A£¬BΪxÖáÉÏÁ½µã£¬C¡¢DΪyÖáÉϵÄÁ½µã£¬¾­¹ýµãA£¬C£¬BµÄÅ×ÎïÏßµÄÒ»²¿·ÖC2×éºÏ³ÉÒ»Ìõ·â±ÕÇúÏߣ¬ÎÒÃǰÑÕâÌõ·â±ÕÇúÏß³ÉΪ¡°µ°Ïß¡±£®ÒÑÖªµãCµÄ×ø±êΪ£¨0£¬-$\frac{3}{2}$£©£¬µãMÊÇÅ×ÎïÏßC2£ºy=mx2-2mx-3m£¨m£¼0£©µÄ¶¥µã£®
£¨1£©ÇóA¡¢BÁ½µãµÄ×ø±ê£»
£¨2£©¡°µ°Ïß¡±ÔÚµÚËÄÏóÏÞÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹µÃ¡÷PBCµÄÃæ»ý×î´ó£¿Èô´æÔÚ£¬Çó³ö¡÷PBCÃæ»ýµÄ×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©°ÑÅ×ÎïÏß½âÎöÕûÀí£¬Áîy=0¿ÉÇóµÃxµÄÖµ£¬Ôò¿ÉÇóµÃA¡¢BµÄ×ø±ê£»
£¨2£©ÓÉA¡¢B¡¢CµÄ×ø±ê£¬¿ÉÇóµÃ¾­¹ýµãA¡¢B¡¢CµÄÅ×ÎïÏß½âÎöʽ£¬Á¬½ÓBC¡¢¹ýµãP×÷PQ¡ÎyÖᣬ½»BCÓÚµãQ£¬ÓÉB¡¢CµÄ×ø±ê¿ÉÇóµÃÖ±ÏßBCµÄ½âÎöʽ£¬Ôò¿ÉÉè³öPµã×ø±ê£¬´Ó¶ø±íʾ³öQµã×ø±ê£¬Ôò¿ÉÇóµÃPQµÄ³¤£¬´Ó¶øÓÃPµã×ø±ê±íʾ³ö¡÷PBCµÄÃæ»ý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÇóµÃPµã×ø±êºÍ¡÷PBCÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º
£¨1£©¡ßy=mx2-2mx-3m=m£¨x-3£©£¨x+1£©£¬ÇÒm¡Ù0£¬
¡àµ±y=0ʱ£¬¿ÉµÃm£¨x-3£©£¨x+1£©=0£¬½âµÃx1=-1£¬x2=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£»
£¨2£©Éè¹ýA¡¢B¡¢CÈýµãµÄÅ×ÎïÏß½âÎöʽΪy=ax2+bx+c£¬
ÔòÓÐ$\left\{\begin{array}{l}{a-b+c=0}\\{9a+3b+c=0}\\{c=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-1}\\{c=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏßC1½âÎöʽΪy=$\frac{1}{2}$x2-x-$\frac{3}{2}$£¬
Èçͼ£¬¹ýµãP×÷PQ¡ÎyÖᣬ½»BCÓÚQ£¬
ÉèÖ±ÏßBC½âÎöʽΪy=kx+s£¬ÔòÓÐ$\left\{\begin{array}{l}{3k+s=0}\\{s=-\frac{3}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{s=-\frac{3}{2}}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{1}{2}$x-$\frac{3}{2}$£¬
ÉèP£¨x£¬$\frac{1}{2}$x2-x-$\frac{3}{2}$£©£¬ÔòQ£¨x£¬$\frac{1}{2}$x-$\frac{3}{2}$£©£¬
¡àPQ=$\frac{1}{2}$x-$\frac{3}{2}$-£¨$\frac{1}{2}$x2-x-$\frac{3}{2}$£©=-$\frac{1}{2}$x2+$\frac{3}{2}$x£¬
¡àS¡÷PBC=$\frac{1}{2}$PQ•OB=$\frac{1}{2}$¡Á£¨-$\frac{1}{2}$x2+$\frac{3}{2}$x£©¡Á3=-$\frac{3}{4}$£¨x-$\frac{3}{2}$£©2+$\frac{27}{16}$£¬
¡ß-$\frac{3}{4}$£¼0£¬
¡àµ±x=$\frac{3}{2}$ʱ£¬S¡÷PBCÓÐ×î´óÖµ£¬S×î´ó=$\frac{27}{16}$£¬
$\frac{1}{2}$¡Á£¨$\frac{3}{2}$£©2-$\frac{3}{2}$-$\frac{3}{2}$=-$\frac{15}{8}$£¬´ËʱPµã×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{15}{8}$£©£®

µãÆÀ ±¾ÌâΪ¶þ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°Ò»Ôª¶þ´Î·½³Ì¡¢´ý¶¨ÏµÊý·¨¡¢Èý½ÇÐεÄÃæ»ý¡¢¶þ´Îº¯ÊýµÄÐÔÖʼ°·½³Ì˼ÏëµÄÓ¦ÓõÈ֪ʶ£®ÔÚ£¨1£©ÖаÑÅ×ÎïÏß½âÎöʽÒòʽ·Ö½â¿ÉÇóµÃA¡¢BµÄ×ø±ê£¬ÔÚ£¨2£©ÖÐÇóµÃÅ×ÎïÏßC1µÄ½âÎöʽ£¬ÓÃPµãµÄ×ø±ê±íʾ³ö¡÷PBCµÄÃæ»ýÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=15£¬BC=8£¬EÊÇABÉÏÒ»µã£¬ÑØDEÕÛµþʹAÂäÔÚDBÉÏ£¬ÇóAEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªa=$\sqrt{2}$+1£¬b=$\sqrt{2}$-1£¬ÇóÏÂÁдúÊýʽµÄÖµ£º
£¨1£©ab
£¨2£©a2+ab+b2  
£¨3£©$\frac{b}{a}$+$\frac{a}{b}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈçͼËùʾ£¬½«³¤·½ÐÎֽƬÏÈÑØÐéÏßABÏòÓÒ¶ÔÕÛ£¬½Ó׎«¶ÔÕÛºóµÄÖ½Æ¬ÑØÐéÏßCDÏò϶ÔÕÛ£¬È»ºó¼ôÏÂÒ»¸öСÈý½ÇÐΣ¬ÔÙ½«Ö½Æ¬´ò¿ª£¬Ôò´ò¿ªºóµÄÕ¹ÐÎͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÒÑÖªÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùx1£¬x2£¨b2-4ac¡Ý0£©£®ÓÃÇó¸ù¹«Ê½Ð´³öx1£¬x2£¬²¢Ö¤Ã÷x1+x2=-$\frac{b}{a}$£¬x1x 2=$\frac{c}{a}$
£¨2£©ÈôÒ»Ôª¶þ´Î·½³Ìx2+x-1=0µÄÁ½¸ùΪm£¬n£¬ÔËÓã¨1£©ÖеĽáÂÛ£¬Çó$\frac{n}{m}$+$\frac{m}{n}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¶þ´Îº¯ÊýC1£ºy=ax2+4ax£¨a¡Ù0£©µÄͼÏó¶¥µãΪM£¬ÏÔÈ»ËüÓëxÖáÒ»¶¨ÓÐÁ½¸ö²»Í¬µÄ½»µã£®
£¨1£©Çó¶þ´Îº¯ÊýC1ÓëxÖáµÄÁ½¸ö½»µãµÄ×ø±ê£»
£¨2£©Èô¶þ´Îº¯ÊýC1ÓëÒ»´Îº¯Êýy=-x-4Ö»ÓÐÒ»¸ö½»µã£¬Çó¶þ´Îº¯ÊýC1µÄ½âÎöʽ£»
£¨3£©½«¶þ´Îº¯ÊýC1ÈÆÔ­µãÖÐÐĶԳƵõ½Çó¶þ´Îº¯ÊýC2£¬
¢ÙÖ±½Óд³öÇó¶þ´Îº¯ÊýC2µÄ½âÎöʽ£¨Óú¬aʽ×Ó±íʾ£©£»
¢Ú¶þ´Îº¯ÊýC2µÄͼÏóÄÜ·ñ¾­¹ý¶þ´Îº¯ÊýC1µÄͼÏó¶¥µãM£¿ËµÃ÷ÀíÓÉ£»
¢ÛÖ±Ïßx=1Óë¶þ´Îº¯ÊýC1¡¢C2·Ö±ð½»ÓÚP¡¢QÁ½µã£¬ÒÑÖª£ºPQ=2£¬Çó¶þ´Îº¯ÊýC1µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏABC=45¡ã£¬µãFÊǸßADºÍBEµÄ½»µã£¬¡ÏCAD=30¡ã£¬CD=4£¬ÇóÏß¶ÎBFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬·½¸ñÖ½ÖÐÿ¸öСÕý·½Ðεı߳¤¶¼ÊÇ1£¬¡÷ABCµÄÈý¸ö¶¥µã¶¼ÔÚ¸ñµãÉÏ£¬Èç¹ûÓã¨1£¬0£©±íʾCµãµÄλÖã¬Óã¨4£¬1£©±íʾBµãµÄλÖã¬ÄÇô£®
£¨1£©»­³öÖ±½Ç×ø±êϵ£»
£¨2£©»­³öÓë¡÷ABC¹ØÓÚxÖá¶Ô³ÆµÄͼÐΡ÷DEF£»
£¨3£©PΪxÖáÉϵÄÒ»¸ö¶¯µã£¬ÊÇ·ñ´æÔÚPʹPA+PBµÄÖµ×îС£¿Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»Èô´æÔÚÇëÇó³öµãPµÄ×ø±êºÍPA+PBµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®½«Ò»×éÊý¾Ý$\sqrt{3}$£¬$\sqrt{6}$£¬3£¬2$\sqrt{3}$£¬$\sqrt{15}$£¬¡­£¬3$\sqrt{10}$£¬°´ÏÂÃæµÄ·½·¨½øÐÐÅÅÁУº
$\sqrt{3}$£¬$\sqrt{6}$£¬3£¬2$\sqrt{3}$£¬$\sqrt{15}$£»
3$\sqrt{2}$£¬$\sqrt{21}$£¬2$\sqrt{6}$£¬3$\sqrt{3}$£¬$\sqrt{30}$£»
¡­
Èô2$\sqrt{3}$µÄλÖüÇΪ£¨1£¬4£©£¬2$\sqrt{6}$µÄλÖüÇΪ£¨2£¬3£©£¬ÔòÕâ×éÊýÖÐ×î´óµÄÊýµÄλÖüÇΪ£¨¡¡¡¡£©
A£®£¨5£¬2£©B£®£¨5£¬3£©C£®£¨6£¬2£©D£®£¨6£¬5£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸