分析 由∠BDF=∠ADC=90°,∠DBF=∠CAD,∠DAB=∠DBA,推出BD=AD,根据ASA证△BFD≌△ACD,证出BF=AC,再由直角三角形的性质即可得出答案.
解答 解:∵AD⊥BC,BE⊥AC,
∴∠BEA=∠ADC=∠ADB=90°,
∴∠C+∠CBE=90°,∠C+∠CAD=90°,
∴∠DBF=∠CAD,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵在△BFD和△ACD中,$\left\{\begin{array}{l}{∠BDF=∠ADC=90°}&{\;}\\{BD=AD}&{\;}\\{∠DBF=∠CAD}&{\;}\end{array}\right.$,
∴△BFD≌△ACD(ASA),
∴BF=AC,
∵∠CAD=30°,∠ADC=90°,
∴BF=AC=2CD=8.
点评 本题考查了全等三角形的性质和判定,等腰三角形的判定、直角三角形的性质;证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 捐款(元) | 10 | 20 | 40 | 100 |
| 人数 | 6 | 7 | ||
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com