精英家教网 > 初中数学 > 题目详情
如图,一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,抛物线y=
43
x2+bx+c的图精英家教网象经过A、C两点,且与x轴交于点B.
(1)求抛物线的函数表达式;
(2)设抛物线的顶点为D,求四边形ABDC的面积;
(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.
分析:(1)求出A和C点的坐标,并将其代入抛物线的解析式,即可求出;
(2)S四边形ABDC=S△EDB-S△ECA,通过求D、B和E点的坐标,根据三角形的面积公式,求出S△EDB和S△ECA
(3)分三种情况进行讨论:①∠PMN=90°,②∠PNM=90°,③∠MPN=90°.
解答:精英家教网解:(1)∵一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,
∴A (-1,0)C (0,-4),
把A (-1,0)C (0,-4)代入y=
4
3
x2+bx+c得
4
3
-b+c=0
c=-4
,解得
b=-
8
3
c=-4

∴y=
4
3
x2-
8
3
x-4;

(2)∵y=
4
3
x2-
8
3
x-4=
4
3
( x-1)2-
16
3

∴顶点为D(1,-
16
3
),
设直线DC交x轴于点E,
由D(1,-
16
3
)C (0,-4),
易求直线CD的解析式为y=-
4
3
x-4,
易求E(-3,0),B(3,0),
S△EDB=
1
2
×6×
16
3
=16,
S△ECA=
1
2
×2×4=4,
S四边形ABDC=S△EDB-S△ECA=12;
(3)设M、N的纵坐标为a,
由B和C点的坐标可知BC所在直线的解析式为:y=
4
3
x-4

则M(
-4-a
4
,a),N(
3a+12
4
,a),
精英家教网①当∠PMN=90°,MN=a+4,PM=-a,因为是等腰直角三角形,则-a=a+4 则a=-2 则P的横坐标为-
1
2

即P点坐标为(-
1
2
,0);
②当∠PNM=90°,PN=MN,同上,a=-2,则P的横坐标为
3×(-2)+12
4
=
3
2

即P点坐标为(
3
2
,0);
③当∠MPN=90°,作MN的中点Q,连接PQ,则PQ=-a,
又PM=PN,∴PQ⊥MN,则MN=2PQ,即:a+4=-2a,
解得:a=-
4
3

点P的横坐标为:
-4-a+3a+12
4
2
=
a+4
4
=
2
3

即P点的坐标为(
2
3
,0).
点评:本题考查了二次函数的综合应用,难度较大,这就需要二次函数各部分知识的熟练掌握,以便灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案