精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC在直角坐标系中,

(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′B′C′的坐标.

(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果点Q′坐标是(mn),那么点Q的坐标是_______.

【答案】1)答案见解析;(2)(m-2,n-3.

【解析】

1)直接利用平移的性质得出对应点位置进而得出答案;(2)根据平移时点的坐标变化规律,上加下减,右加左减求得点Q的坐标。

解:

如图,△A′B′C′即为所求,A′(1,2)、B′(6,5)、C′(3,6);

根据平移时点的坐标变化规律,上加下减,右加左减,可知点Q的坐标是(m-2,n-3).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以的三边为边分别作等边,则下列结论:①①;②四边形为平行四边形;时,四边形是菱形;时,四边形是矩形.其中正确的结论有( )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点AC分别在∠GBE的边BGBE上,且AB=ACADBE,∠GBE的平分线与AD交于点D,连接CD

1)求证:AB=AD

2)求证:CD平分∠ACE

3)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,若,则还需添加的一个条件有( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.

探究:当点E在边AB上,求证:EF=AE+CF.

应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是______

(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场销售服装,平均每天可售出件,每件盈利元,为扩大销售量,减少库存,该商场决定采取适当的降价措施,经调查发现,一件衣服降价元,每天可多售出件.

设每件降价元,每天盈利元,请写出之间的函数关系式;若商场每天要盈利元,同时尽量减少库存,每件应降价多少元?

每件降价多少元时,商场每天盈利达到最大?最大盈利是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=AC,点D,E在边BC上,且BD=CE.

(1)求证: △ABD≌△ACE;

(2)∠B=40°,AB=BE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

1接受问卷调查的学生共有_______人,扇形统计图中基本了解部分所对应扇形的圆心角为_______°

2请补全条形统计图;

3若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到了解基本了解程度的总人数;

4若从对校园安全知识达到了解程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?

查看答案和解析>>

同步练习册答案