【题目】如图,以的三边为边分别作等边、、,则下列结论:①①;②四边形为平行四边形;③当时,四边形是菱形;④当时,四边形是矩形.其中正确的结论有( )个.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
①由△ABE与△BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到△EBF与△DFC全等;
②利用(1)中全等三角形对应边相等得到EF=AC,再由三角形ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形;
③当AE=AD时,ADFE是菱形,可以用邻边相等的平行四边形是菱形判断即可;
④当∠BAC=150°,由此可求得∠EAD的度数,则可得ADFE是矩形,由此即可判断;
∵△ABE、△BCF为等边三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,
∴∠ABE∠ABF=∠FBC∠ABF,即∠CBA=∠FBE,
在△ABC和△EBF中,
,
∴△ABC≌△EBF(SAS),
∴EF=AC,
又∵△ADC为等边三角形,
∴CD=AD=AC,
∴EF=AD=DC,
同理可得△ABC≌△DFC,
∴DF=AB=AE=DF,
∴四边形AEFD是平行四边形;
∴∠FEA=∠ADF,
∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,
在△FEB和△CDF中,,
∴△EBF≌△DFC(SAS),故①正确,
∴EB=DF,EF=DC.
∵△ACD和△ABE为等边三角形,
∴AD=DC,AE=BE,
∴AD=EF,AE=DF
∴四边形AEFD是平行四边形;故②正确,
若AB=AC,则AE=AD,四边形AEFD是菱形此,
故△ABC满足AB=AC时,四边形AEFD是菱形;故③正确;
若∠BAC=90°,则平行四边形AEFD是矩形;
由(1)知四边形AEFD是平行四边形,则∠EAD=90°时,可得平行四边形AEFD是矩形,
∴∠BAC=360°60°60°90°=150°,
即△ABC满足∠BAC=150°时,四边形AEFD是矩形;
∴∠BAC=90°,四边形AEFD不是矩形;故④错误,
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,的顶点坐标分别为,,,把沿直线翻折,点的对应点为,抛物线经过点,顶点在直线上.
证明四边形是菱形,并求点的坐标;
求抛物线的对称轴和函数表达式;
在抛物线上是否存在点,使得与的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)
(2)求S△ADC: S△ADB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中的点上标出相应字母A、B、C,并求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形中,对角线,相交于点,若、是上两动点,、分别从、两点同时以的相同的速度向、运动
四边形是平行四边形吗?说明你的理由.
若,,当运动时间为多少时,以、、、为顶点的四边形为矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).
(1)求证无论k为何值,方程总有两个不相等实数根;
(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点P是射线ON上一动点,点B是射线OA上一动点,点B,P均不与点O重合,当_____时,为直角三角形;如果使得为钝角三角形,则的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)把△ABC向上平移3个单位,再向右平移2个单位得△A′B′C′,在图中画出两次平移后得到的图形△A′B′C′,并写出A′、B′、C′的坐标.
(2)如果△ABC内部有一点Q,根据(1)中所述平移方式得到对应点Q′,如果点Q′坐标是(m,n),那么点Q的坐标是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com