精英家教网 > 初中数学 > 题目详情
如图,AB⊥BD,CD⊥BD,B、D分别为垂足.

(1)已知:∠APC=90°,求证:△ABP∽△PDC.
(2)已知:AB=2,CD=3,BD=7,点P是线段BD上的一动点,若使点P分别与A、B和C、D构成的两个三角形相似,求线段PB的值.
(3)已知:AB=2,CD=3,点P是直线BD上的一动点,设PB=x,BD=y,使点P分别与A、B和C、D构成的两个三角形相似,求y关于x的函数解析式.
分析:(1)由于AB⊥BD,CD⊥BD,可知∠B与∠D为直角,又∠APC=90°,则∠APB+∠CPD=90°,可以得出∠A=∠CPD,从而证出△ABP∽△PDC.
(2)设PB=x,则PD为(7-x),然后分两种情况讨论:①△ABP∽△PDC;②△ABP∽△CDP.据此,即可利用相似三角形的性质列出比例式,从而求出线段PB的值.
(3)分两种情况讨论:①△ABP∽△PDC;②△ABP∽△CDP.据此,即可利用相似三角形的性质列出含x、y的比例式,从而求出y关于x的函数解析式.
解答:解:(1)证明:∵AB⊥BD,CD⊥BD,
∴∠B=∠D=90°①,
∴∠A+∠APB=90°,
又∵∠APB+∠CPD=90°,
∴∠A=∠CPD②,
∴由①②,△ABP∽△PDC.

(2)设PB=x,则PD为(7-x),
①△ABP∽△PDC时,
AB
PD
=
BP
CD

2
7-x
=
x
3

解得,(x-1)(x-6)=0,
x=1或x=6,
②△ABP∽△CDP.
AB
CD
=
BP
PD

2
3
=
x
7-x

解得x=
14
5

综上所述,PB=1,或PB=6,或PB=
14
5


(3)①△ABP∽△PDC时,
AB
PD
=
BP
CD

2
y-x
=
x
3

整理得,y=x+
6
x

②△ABP∽△CDP.
AB
CD
=
BP
PD

2
3
=
x
y-x

整理得,y=
5
2
x.
③△ABP∽△PDC时,
AB
PD
=
BP
CD

∵PD=PB-BD=x-y,
2
x-y
=
x
3

y=x-
6
x
点评:本题考查了相似三角形的判定与性质,三道题步步深入,前一道题为后面的题提供思路,要注意这一点,同时题目也体现了分类讨论思想的重要作用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明
1
AB
+
1
CD
=
1
EF
成立(不要求考生证明).
若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD于点F,则:
(1)
1
AB
+
1
CD
=
1
EF
还成立吗?如果成立,请给出证明;如果不成立,请说明理由;
(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB⊥BD,CD⊥BD,AB=6cm,CD=4cm,BD=14cm,点P在直线BD上,由B点到D点移动,
(1)当P点移动到离B点多远时,△ABP∽△PDC;
(2)当P点移动到离B多远时,∠APC=90°?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=BD,BC=BE,∠ABD=∠EBC,则有
△ABC
△ABC
△DBE
△DBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB⊥BD,CD⊥BD,AD=CB.求证:AD∥BC.

查看答案和解析>>

同步练习册答案