精英家教网 > 初中数学 > 题目详情
若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是(  )
A、矩形
B、等腰梯形
C、对角线相等的四边形
D、对角线互相垂直的四边形
考点:中点四边形
专题:
分析:首先根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.
解答:解:如图,根据题意得:四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,
∴EF=FG=CH=EH,BD=2EF,AC=2FG,
∴BD=AC.
∴原四边形一定是对角线相等的四边形.
故选:C.
点评:此题考查了菱形的性质与三角形中位线的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

要使分式
1
x-10
有意义,则x的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,M、N是两直角边上的点,且AM=BC,CM=BN,BM、AN交于点P,则∠APM的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

反比例函数y=-
2
x
(x>0),点B为其上一点,点A为x轴负半轴上一点,当点B的横坐标逐渐减小时,△AOB的面积(  )
A、逐渐减少B、逐渐增大
C、不变D、先增大后减小

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造?PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.
(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;
(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;
(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设?PCOD的面积为S.
①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;
②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F,垂足分别为E、F.
(1)求证:BF=DE;
(2)连接CE、AF,证明四边形CEAF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:
a-3
3a2-6a
÷(a+2-
5
a-2
),其中a2+3a-1=0.

查看答案和解析>>

同步练习册答案