精英家教网 > 初中数学 > 题目详情
阅读下面计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的过程,然后填空.
解:因为
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
3
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11

=
1
2
1
1
-
1
11

=
5
11

以上方法为裂项求和法,请类比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
9
40
9
40

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+
1
11×13
1
11×13
=
6
13
中最未一项为
1
11×13
1
11×13
分析:(1)只需按照给出的规律展开即可求得,
(2)根据结果求左边最后一项,可以运用方程思想求出最后一项所在位置.
解答:解:(1)原式=
1
2
1
2
-
1
4
+
1
4
-
1
6
+…+
1
18
-
1
20
),
=
1
2
×(
1
2
-
1
20
),
=
9
40


(2)设最后一项为
1
x(x+2)

则原式=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
x
-
1
x+2
)=
6
13

解得x=11.
故最后一项为
1
11×13

故答案为:(1)
9
40
;(2)
1
11×13
点评:此题主要考查了数字的变化类.此类问题一般都可以展开,前后项消去,最后只剩下前后两端的数值,计算较为简便.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的过程,然后填空.
解:因为
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11
)=
1
2
1
1
-
1
11
)=
5
11

以上方法为裂项求和法,请类比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
 

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+(  )=
6
13
中最未一项为
 

(3)已知-3x2ya+1+x3y-3x4-2是五次四项式,单项式-3x3by3-a与多项式的次数相同,求
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
+
1
8×9
-
2
b
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面问题:因为(
2
+1)(
2
-1)=(
2
)2-12=2-1=1

所以,
1
1+
2
=
1×(
2
-1)
(
2
+1)(
2
-1)
=
2
-1
1
3
+
2
=
3
-
2
(
3
+
2
)(
3
-
2
)
=
3
-
2

试求:
(1)
1
n+1
+
n
(n为正整数)的值;
(2)利用上面所揭示的规律计算:
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
2010
+
2011
+
1
2011
+
2012
)•(
2012
+1)

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的文字,完成后面问题.
我们知道
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,那么
1
4×5
=
1
4
-
1
5
1
4
-
1
5

并依此计算:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的文字,完成后面的问题.
我们知道,
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,那么
1
4×5
=
 
1
2005×2006
=
 

(1)用含有n的式子表示你发现的规律
 

(2)依上述方法将计算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2003×2005
=
 

(3)如果n,k均为正整数,那么
1
n(n+k)
=
 

查看答案和解析>>

同步练习册答案