精英家教网 > 初中数学 > 题目详情

一个等边三角形的内切圆的半径为r、外接圆的半径为R,那么数学公式=________.

2
分析:首先根据题意画出图形,设圆心为O,内切圆与三角形相切于E、F、M点,连接OF、OA,由题意可知外接圆与内切圆属同心圆,故OA为外接圆的半径,OF为内切圆的半径,由∠OAF=30°,OF⊥AC,即可推出结论.
解答:解:如图,连接OF、OA,
∵等边三角形ABC,
∴外接圆与内切圆属同心圆,
∴∠OAF=30°,OF⊥AC,
∴OA:OF=2:1,
∴R:r=2,
故答案为2.
点评:本题主要考查等边三角形的内切圆、外接圆的性质,等边三角形的性质,关键在于根据题意画出图形,作辅助线构建直角三角形,解直角三角形即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,等边三角形ABC中,AD⊥BC于D,△ABD的内切⊙O的半径为R,另有一个⊙O1与AB,BD,⊙O都相切,其半径为r1,则⊙O与⊙O1的面积之比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•廊坊一模)圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了
m
2πr
m
2πr
圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了
R+r
r
R+r
r
圈;

(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了
R-r
r
R-r
r
圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了______圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了______圈;
作业宝
(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了______圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.作业宝

查看答案和解析>>

科目:初中数学 来源:第3章《圆》好题集(08):3.5 直线和圆的位置关系(解析版) 题型:选择题

如图,等边三角形ABC中,AD⊥BC于D,△ABD的内切⊙O的半径为R,另有一个⊙O1与AB,BD,⊙O都相切,其半径为r1,则⊙O与⊙O1的面积之比为( )

A.1:9
B.9:1
C.8:1
D.与R,r1的取值有关

查看答案和解析>>

科目:初中数学 来源:2013年河北省廊坊市中考数学一模试卷(解析版) 题型:解答题

圆的滚动问题探索:
(1)如图1,一个半径为r的圆沿直线方向从A地滚动到B地,若AB的长为m,则该圆在滚动过程中自转了______圈.(用含的式子表示)
试验:
现有两个半径相等的圆(如图5),将⊙O2固定,⊙O1沿定圆的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2周围滚动一周回到原来的位置时,⊙O1自转了2圈,而⊙O1的圆心运动的线路也是一个圆,而这个圆的周长恰好是⊙O1的周长的2倍.
(2)如图2,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的周围滚动,滚动时两圆保持相外切的位置关系.当⊙O1沿⊙O2沿周围滚动一周回到原来的位置时,⊙O1自转了______圈;

(3)如图3,⊙O1,和⊙O2内切,⊙O1的半径为r,⊙O2的半径为R(R>r),现将⊙O2固定,让,⊙O1沿⊙O2的边缘滚动,动时两圆保持相内切的位置关系.当⊙O1沿⊙O2边缘滚动一圈回到原来的位置时,⊙O1自转了______圈.
解决问题:
如图4,一个等边三角形与它的一边相切的圆的周长相等,当此圆按箭头方向从某一位置沿等边三角形的三边作无滑动滚动,直至回到原来的位置时,该圆自转了多少圈?请说明理由.

查看答案和解析>>

同步练习册答案