精英家教网 > 初中数学 > 题目详情
如图,一次函数y=kx+b(k≠0)与反比例函数交于点A(1,2),与x轴交于点M,与y轴交于点N.
(1)当点M的坐标为(3,0)时,求此一次函数解析式及其与的另一个交点B的坐标;
(2)在(1)的条件下,过A作AC⊥x轴于点D,连接OB交AC于E,试写出图中与△AOE面积相等的图形,并说明理由;
(3)当点M在x轴上运动时,是否能使OA2=AM•AN?若存在,试直接写出所有适合的点M的坐标(不必写出解答过程);若并不存在,请说明理由.
【答案】分析:(1)把M,A代入一次函数解析式,即可求得解析式,让一次函数解析式和反比例函数解析式组成方程组可求得另一交点坐标;
(2)看是否有等底等高的三角形,以及由面积相同的三角形减去同一三角形得到的四边形;
(3)由于OA2=AM•AN,那么这些线段所在的三角形应相似,或者相等以及不确定的直线过原点等多种情况.
解答:(1)解:把M,A代入一次函数解析式得
∴k=-1,b=3,
∴y=-x+3,由题意得
∴x=2,y=1或x=1,y=2,
∵A(1,2),
∴另一个交点B的坐标为(2,1);

(2)解:∵k=2,
∴S△AOC=A△BOD==1,
∴都减去S△COE
∴梯形BECD的面积与△AOE面积相等,
由三角形中位线知E为OB中点,
∴△ABE的面积与△AOE面积相等,
∴与△AOE面积相等的图形有△ABE、梯形BECD;

(3)解:
①若△OAM∽△NAO,此时,MN⊥OA,从而M(5,0),如最左图所示,
②若△AON∽△AMO,可求出OM=3,从而M(-3,0),如左2图.这样求出本题两解.
若只这样考虑,殊不知,在考虑满足OA2=AM•AN时忽视了一类特殊情形,OA=AM=AN.
③若直线过原点,此时M、N与O重合,此时M(0,0);
④若直线不与OA重合,此时△MNO为直角三角形,A为斜边MN的中点,OM=2,M(2,0).

点评:这是一道集一次函数、反比例函数、直角三角形、运动、面积等问题为一体的综合题,除考查学生上述的基础知识外,还考查学生的综合运用能力,需要通过构建模型,通过观察、分析、猜想、探索,再进一步计算验证,才能最终解决问题.该题体现了新课程的理念,有效的考查了学生的思维能力、创新能力、自主学习的潜能.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案