精英家教网 > 初中数学 > 题目详情
如图,⊙O′经过⊙O的圆心,E、F是两圆的交点,直线OO′交⊙O′于点P,交EF精英家教网于点C,交⊙O于点Q,且EF=2
15
,sin∠P=
1
4

(1)求证:PE是⊙O的切线;
(2)求⊙O和⊙O′的半径的长;
(3)若点A在劣弧
QF
上运动(与点Q、F不重合),连接PA交劣弧
DF
于点B,连接BC并延长交⊙O于点G,设CG=x,PA=y,求y关于x的函数关系式,并写出自变量x的取值范围.
分析:(1)要想证PE是⊙O的切线,只要连接OE,求证∠OEP=90°即可.
(2)利用相交弦的性质与三角函数和勾股定理来确定圆的半径.
(3)利用切线长定理、相交弦定理、相似比来确定y与x的函数关系.
解答:精英家教网(1)证明:连接OE,
∵OP是⊙O'的直径,
∴∠OEP=90°.
∴PE是⊙O的切线.

(2)解:设⊙O、⊙O'的半径分别为r,r'
∵⊙O与⊙O'交于E、F,
∴EF⊥OO',EC=
1
2
EF=
15

∴在Rt△EOC、Rt△POE中,∠OEC=∠OPE.
∴sin∠OEC=sin∠OPE=
1
4

∴sin∠OEC=
OC
OE
=
OC
r
=
1
4

即OC=
1
4
r,
r2-
1
16
r2=15
,解得r=4.
Rt△OPE中,sin∠OPE=
OE
OP
=
r
2r′

∴r'=8.

(3)解:连接OF,
∵∠OEP=90°,CE⊥OP,
∴PE2=PC•PO.
又∵PE是⊙O的切线,
∴PE2=PB•PA.
∴PC•PO=PB•PA.
PC
PA
=
PB
PO

又∵∠CPB=∠APO,
∴△CPB∽△APO.
BC
OA
=
PC
PA

BC=
60
PA

由相交弦定理,得BC•CG=CF•CE.
BC=
15
CG

∴PA=4CG.
即y=4x(
15
<x<5
).
点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°,圆心C的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北碚区模拟)如图,经过点A(-2,0)的一次函数y=ax+b(a≠0)与反比例函数y=
k
x
(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=
3
2
,点B的坐标为(4,0).
(1)求反比例函数和一次函数的解析式;
(2)设一次函数与y轴相交于点C,求四边形OBPC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•太原二模)如图,经过原点的抛物线y1=x2+2x与x轴交于点A,将它平移得到抛物线y2=(x-2)2+1.有以下结论:
①y2是由y1先向上平移1个单位,再向右平移2个单位得到的;
②无论x取何值,y2≥1;
③当x=0时,y2-y1=5;
④当y1<0时,-2<x<0.
其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•龙湾区一模)如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案