精英家教网 > 初中数学 > 题目详情

如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
(1)求点E的坐标;
(2)求折痕CD所在直线的解析式.

解:(1)如图,∵四边形ABCD是长方形,
∴BC=OA=10,∠COA=90°.
由折叠的性质知CE=CB=10.
∵OC=6,
∴在直角△COE中,由勾股定理得
∴E(8,0);

(2)设CD所在直线的解析式为y=kx+b(k≠0).
∵C(0,6).
∴b=6.
设BD=DE=x.
∴AD=6-xAE=OA-OE=2,
由勾股定理得AD2+AE2=DE2(6-x)2+22=x2


∴D(10,),
代入y=kx+b 得,

故CD所在直线的解析式为:
分析:(1)根据折叠的性质知CE=CB=10.在在直角△COE中,由勾股定理求得OE=8;
(2)根据OC=6知C(0,6).由折叠的性质与勾股定理求得D(10,),利用待定系数法求CD所在直线的解析式.
点评:本题考查了一次函数综合题.在此题中,涉及到的知识点有:矩形的性质,折叠的性质,勾股定理以及待定系数法求一次函数的解析式.解答此题时,注意坐标与图形的性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案