分析 作CF⊥AD于点F,在直角△ABE中求得BE,和AE的长,然后在直角△CDE中利用三角函数求得DE的长,根据AD=DF+AF=CF+BC+BE求解.
解答
解:作CF⊥AD于点F.
在Rt△ABE中,∵AB=15,
∴BE=ABsin19.5°=15sin19.5°,
AE=ABcos19.5°=15cos19.5°,
在Rt△CDF中,∵CF=AE,∠DCF=45°,
∴DF=CF,
∴AD=DF+AF=CF+BC+BE=15cos19.5°+1.7+15sin19.5°≈21.0(m).
答:楼高AD为21.0米.
点评 本题考查了解直角三角形的应用-仰角俯角问题,还考查的知识点有三角函数、直角三角形的性质以及勾股定理等.
科目:初中数学 来源: 题型:解答题
| 组别 | 成绩x分 | 频数(人数) |
| 第1组 | 5≤x<10 | 4 |
| 第2组 | 10≤x<15 | 8 |
| 第3组 | 15≤x<20 | 16 |
| 第4组 | 20≤x<25 | a |
| 第5组 | 25≤x<30 | b |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com