精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,BD为内角平分线,CE为外角平分线,若∠BDC=130°,∠E=50°,则∠BAC的度数为


  1. A.
    100°
  2. B.
    110°
  3. C.
    120°
  4. D.
    130°
C
分析:根据三角形的一个外角等于与它不相邻的两个内角的和以及CE是外角的平分线列式求出∠B的度数,再根据BD为内角平分线求出∠ABD的度数,然后利用三角形的外角性质即可求出∠BAC的度数.
解答:根据三角形的外角性质,∠DBC+∠BDC=2(∠ABC+∠E),
∵BD为内角平分线,
∴∠DBC=∠ABD,
∠ABC+130°=2(∠ABC+50°),
解得∠ABC=20°,
∴∠ABD=×20°=10°,
在△ABD中,∠BDC=∠ABD+∠BAC,
即130°=10°+∠BAC,
解得∠BAC=120°.
故选C.
点评:本题主要考查了三角形的内角和定理与三角形的外角性质,角平分线的定义,根据外角平分线求出∠ABC的度数是解题的关键,也是解答本题的突破口,有一定的技巧.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案