精英家教网 > 初中数学 > 题目详情
1.如图,沿△ABC的各边想同侧作正三角形ABD、BCF、ACE.
(1)求证:四边形AEFD是平行四边形.
(2)当∠BAC为多少度时,四边形AEFD是矩形?
(3)当△ABC的边满足什么条件时,四边形AEFD是菱形?

分析 (1)由等边三角形的性质得出AC=CE=AE,AB=AD=BD,BC=CF=BF,∠BCF=∠ACE=60°,求出∠BCA=∠FCE,证△BCA≌△FCE,得出EF=BA=AD,同理DF=AC=AE,即可得出结论;
(2)求出∠DAE的度数,根据矩形的判定得出即可;
(3)再由AB=AC得出四边形AEFD是菱形.

解答 (1)证明:∵△ABD、△BCE、△ACE是等边三角形,
∴AC=CE=AE,AB=AD=BD,BC=CF=BF,∠BCF=∠ACE=60°,
∴∠BCA=∠FCE=60°-∠ACF,
在△BCA和△FCE中,$\left\{\begin{array}{l}{BC=CF}\\{∠BCA=∠FCE}\\{AC=CE}\end{array}\right.$,
∴△BCA≌△FCE(SAS),
∴EF=BA=AD,
同理:DF=AC=AE,
∴四边形DAEF是平行四边形;
(2)当∠A=150°时,四边形DAEF是矩形,理由如下:
∵△ABD、△ACE是等边三角形,
∴∠DAB=∠EAC=60°,
∴∠DAE=360°-60°-60°-150°=90°,
∵四边形DAEF是平行四边形,
∴四边形DAEF是矩形,
(3)当AB=AC时四边形AEFD是菱形.
理由是:由(1)得:EF=AB=AD,DF=AC=AE,
∵AB=AC,
∴AD=AE,
∵四边形DAEF是平行四边形,
∴四边形DAEF是菱形.

点评 本题考查了等边三角形的性质、全等三角形的性质和判定、平行四边形的判定、菱形的判定、矩形的判定以及正方形的判定;解此题的关键是求出EF=BA=AD,DF=AC=AE,主要考查了学生的推理能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.已知直角三角形的两边长分别为5和12,那么以这个直角三角形的斜边为边长的正方形的面积为144或169.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一运动员推铅球,铅球经过的路线为如图所示的抛物线.
(1)求铅球所经过的路线的函数表达式和自变量的取值范围;
(2)求铅球落地点离运动员有多远(精确到0.01)?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,连结正五边形的各条对角线AD,AC,BE,BD,CE,给出下列结论:①∠AME=108°;②五边形PFQNM∽五边形ABCDE;③AN2=AM•AD,其中正确的是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知y是关于x的一次函数,且点(0,-8),(1,2)在此函数图象上.
(1)求这个一次函数表达式;
(2)若点(-2,y1),(2,y2)在此函数图象上,试比较y1,y2的大小;
(3)求当-3<y<3时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.当x=m-1,y=m+1满足方程2x-y+m-3=0,则m的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先化简,再求值
(a-$\frac{{a}^{2}}{a+b}$)($\frac{a}{a+b}$-1)÷$\frac{b}{a+b}$,其中a,b分别为关于x的一元二次方程x2-$\sqrt{3}x$+1=0的两个根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,直线y=$\frac{1}{2}$x-1与抛物线y=-$\frac{1}{4}$x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为-8,点P是直线AB上方的抛物线上的一动点(不与点A,B重合).
(1)求该抛物线的函数关系式;
(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;
(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.菱形具有而矩形不一定具有的性质是(  )
A.两组对边分别平行B.对角线相等
C.对角线互相平分D.四条边相等

查看答案和解析>>

同步练习册答案