【题目】在平面直角坐标系中画出直线y=x+1的图象,并根据图象回答下列问题:
(1)写出直线与x轴、y轴的交点坐标;
(2)求出直线与坐标轴围成的三角形的面积;
(3)若直线y=kx+b与直线y=x+1关于y轴对称,求k,b的值.
【答案】(1)与x轴的交点坐标为(-3,0),与y轴的交点坐标为(0,1);(2);(3)k=-,b=1.
【解析】
(1)根据题意,分析可得在y=x+1中,当x=-3时,y=0,x=0时,y=1,据此可以作出图象.
(2)根据三角形的面积公式计算即可.
(3)根据直线y=x+1求得直线y=x+1关于y轴的对称点,然后根据待定系数法求得即可.
画出图象如图:
(1)令y=0,得x=-3,令x=0,得y=1.所以直线y=x+1与x轴的交点坐标为(-3,0),与y轴的交点坐标为(0,1).
(2)由三角形面积公式可知直线与坐标轴围成的三角形的面积=×3×1=.
(3)因为直线y=x+1与x轴的交点坐标为(-3,0),与y轴的交点坐标为(0,1),
所以点(-3,0)关于y轴的对称点为(3,0),点(0,1)关于y轴的对称点为(0,1),
把(0,1)代入y=kx+b,得b=1.
把(3,0)代入y=kx+b,得0=3k+b,
又因为b=1,所以k=-.
解得k=-,b=1.
科目:初中数学 来源: 题型:
【题目】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.
(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;
(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给下以下结论:
①2a﹣b=0;
②abc>0;
③4ac﹣b2<0;
④9a+3b+c<0;
⑤关于x的一元二次方程ax2+bx+c+3=0有两个相等实数根;
⑥8a+c<0.
其中正确的个数是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下是甲、乙、丙三人看地图时对四个地标的描述:
甲:从学校向北直走500公尺,再向东直走100公尺可到图书馆.
乙:从学校向西直走300公尺,再向北直走200公尺可到邮局.
丙:邮局在火车站西方200公尺处.
根据三人的描述,若从图书馆出发,则能走到火车站的走法是( )
A. 向南直走300公尺,再向西直走200公尺
B. 向南直走300公尺,再向西直走600公尺
C. 向南直走700公尺,再向西直走200公尺
D. 向南直走700公尺,再向西直走600公尺
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.
探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.
∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.
∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A
探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD=AE,∠ADC=∠AEB,BE与CD相交于点O.
(1)在不添加辅助线的情况下,由已知条件可以得出许多结论,例如:△ABE≌△ACD、∠DOB=∠EOC、∠DOE=∠BOC等.请你动动脑筋,再写出3个结论
(所写结论不能与题中举例相同且只要写出3个即可)
① ,② ,③ ,
(2)请你从自己写出的结论中,选取一个说明其成立的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com