精英家教网 > 初中数学 > 题目详情

【题目】如图,AD=AE,∠ADC=∠AEB,BECD相交于点O.

(1)在不添加辅助线的情况下,由已知条件可以得出许多结论,例如:△ABE≌△ACD、∠DOB=∠EOC、∠DOE=∠BOC等.请你动动脑筋,再写出3个结论

(所写结论不能与题中举例相同且只要写出3个即可)

,② ,③

(2)请你从自己写出的结论中,选取一个说明其成立的理由.

【答案】(1)见解析;(2)见解析.

【解析】

本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.

解:①△DOB≌△EOC ②△BCD≌△CBE ③∠ABE=ACD BD=EC.

证明:∵AD=AE,ADC=AEB,A=A,

∴△ADC≌△AEB,

AB=AC,即BD=EC,B=C,

又∠DOB=EOC(对顶角相等),

∴△DOB≌△EOC(AAS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中画出直线y=x+1的图象,并根据图象回答下列问题:

(1)写出直线与x轴、y轴的交点坐标;

(2)求出直线与坐标轴围成的三角形的面积;

(3)若直线y=kx+b与直线y=x+1关于y轴对称,求k,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中AD是A的外角平分线,P是AD上一动点且不与点A、D重合,记PB+PC=a,AB+AC=b,则a、b的大小关系是(

Aa>b Ba=b Ca<b D不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把ABC沿DE折叠,当点A落在四边形BCDE内部时,A1+2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.

(1)求证:△BAD≌△CAE;

(2)试猜想BD、CE有何特殊位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】旋转变换是全等变换的一种形式,我们在解题实践中经常用旋转变换的方法来构造全等三角形来解决问题。

(1)方法探究:如图①,在△ABC中,∠BAC=90°,AB=AC,点D、E在边BC上,∠DAE=45°

试探究线段BD、CE、DE可以组成什么样的三角形。我们可以过点BBF⊥BC,使BF=EC,连接AF、DF,易得∠AFB=45°进而得到△AFB≌△AEC,相当于把△AEC绕点A顺时针旋转90°到△AFB,请接着完成下面的推理过程:

∵△AFB≌△AEC,

∴∠BAF= ,AF=AE,

∵∠BAC=90°,∠DAE=45°,

∴∠BAD+∠CAE=

∴∠BAF+∠BAD=45°,

∴∠DAF=45°=

在△DAF与△DAE

AF=AE,

∠DAF=∠DAE,

AD=AD,

∴△DAF≌△DAE,

∴DF=

∵BD、BF、DF组成直角三角形

∴BD、CE、DE组成直角三角形.

(2)方法运用

如图②,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠ABC+∠ADC=180°,点E在边BC上,点F在边CD上,∠EAF=45°试判断线段BE、DF、EF之间的数量关系,并说明理由。

如图③,在①的基础上若点E、F分别在BCCD的延长线,其他条件不变,①中的关系在图③中是否仍然成立?若成立请说明理由;若不成立请写出新的关系,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+mx(m>0且m≠1)与x轴交于原点O和点A,点B的坐标为(1,﹣1),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连结OB、OC.

(1)求点A的横坐标.(用含m的代数式表示).
(2)若m=3,则点C的坐标为
(3)当点C与抛物线的顶点重合时,求四边形ABOC的面积.
(4)结合m的取值范围,直接写出∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)填空:△ABF可以由△ADE绕旋转中心点 , 按逆时针方向旋转度得到;
(2)若BC=8,DE=6,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为( )
A.130°
B.50°
C.40°
D.60°

查看答案和解析>>

同步练习册答案