精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中AD是A的外角平分线,P是AD上一动点且不与点A、D重合,记PB+PC=a,AB+AC=b,则a、b的大小关系是(

Aa>b Ba=b Ca<b D不能确定

【答案】A.

【解析】

试题分析:如图,在BA的延长线上取一点E,使AE=AC,连接EP.由AD是BAC的外角平分线,可知CAP=EAP,在ACP和AEP中,AE=AC,EAP=PAC,AP=AP,∴△ACP≌△AEP(SAS)PC=PE,在BPE中,PB+PE>BE,而BE=AB+AE=AB+AC,故PB+PE>AB+AC,所以PB+PC>AB+AC,PB+PC=a,AB+AC=b,a>b.故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把下列各式分解因式:
(1)3x﹣12x3
(2)(x2+4)2﹣16x2
(3)y(y+4)﹣4(y+1)
(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线l1的最高点为P(3,4),且经过点A(0,1),将抛物线l1绕原点O旋转180°后,得到抛物线l2 , 求l2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.

探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:

∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.

∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.

∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A

探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= 的图象如图,给出以下结论:
①常数k<1;
②在每一个象限内,y随x的增大而减小;
③若点A(﹣1,a)和A′(1,b)都在该函数的图象上,则a+b=0;
④若点B(﹣2,h)、C( ,m)、D(3,n)在该函数的图象上,则h<m<n.
其中正确的结论是(

A.①②
B.②③
C.③④
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BCD、E.

(1)若BC=10,则△ADE周长是多少?为什么?

(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:

如图1,在四边形ABCD中,ABAD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BCCD上的点,且∠EAF=60°,探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DGBE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是__________________

探索延伸:

如图2,若在四边形ABCD中,ABADBD=180°,EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

结论应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

能力提高:

如图4,等腰直角三角形ABC中,∠BAC=90°,ABAC,点MN在边BC上,且∠MAN=45°.若BM=5,CN=12,则MN的长为_________(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD=AE,∠ADC=∠AEB,BECD相交于点O.

(1)在不添加辅助线的情况下,由已知条件可以得出许多结论,例如:△ABE≌△ACD、∠DOB=∠EOC、∠DOE=∠BOC等.请你动动脑筋,再写出3个结论

(所写结论不能与题中举例相同且只要写出3个即可)

,② ,③

(2)请你从自己写出的结论中,选取一个说明其成立的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8AC=6DBC的中点,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使DE=AD,再证明“△ADC≌△EDB”.

(1)探究得出AD的取值范围是_____

(2)(问题解决)如图2,△ABC中,∠B=90°,AB=2AD是△ABC的中线,CEBCCE=4,且∠ADE=90°,求AE的长.

查看答案和解析>>

同步练习册答案