精英家教网 > 初中数学 > 题目详情

【题目】问题背景:

如图1,在四边形ABCD中,ABAD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BCCD上的点,且∠EAF=60°,探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DGBE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是__________________

探索延伸:

如图2,若在四边形ABCD中,ABADBD=180°,EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

结论应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

能力提高:

如图4,等腰直角三角形ABC中,∠BAC=90°,ABAC,点MN在边BC上,且∠MAN=45°.若BM=5,CN=12,则MN的长为_________(直接写出答案)

【答案】BE+DF=EF13

【解析】

旋转求解即可.

问题背景:EF=BE+DF;

探索延伸:EF=BE+DF仍然成立.

证明如下:如图,延长FD到G,使DG=BE,连接AG,

∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,

∴∠B=∠ADG,

在△ABE和△ADG中,

∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,

∵∠EAF=∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,

∴∠EAF=∠GAF,

在△AEF和△GAF中,

∴△AEF≌△GAF(SAS),

∴EF=FG,

∵FG=DG+DF=BE+DF,

∴EF=BE+DF;

实际应用:如图,连接EF,延长AE、BF相交于点C,

∵∠AOB=30°+90°+(90°﹣70°)=140°,

∠EOF=70°,

∴∠EAF=∠AOB,

又∵OA=OB,

∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,

∴符合探索延伸中的条件,

∴结论EF=AE+BF成立,

即EF=1.5×(50+60)=165海里.

答:此时两舰艇之间的距离是165海里.

能力提高:MN=13.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(8)将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.

(1)求∠1的度数;

(2)求证:EFG是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.

(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE= 时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中AD是A的外角平分线,P是AD上一动点且不与点A、D重合,记PB+PC=a,AB+AC=b,则a、b的大小关系是(

Aa>b Ba=b Ca<b D不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把ABC沿DE折叠,当点A落在四边形BCDE内部时,A1+2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是什么?试说明你找出的规律的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.

(1)求证:△BAD≌△CAE;

(2)试猜想BD、CE有何特殊位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+mx(m>0且m≠1)与x轴交于原点O和点A,点B的坐标为(1,﹣1),连结AB,将线段AB绕点A顺时针旋转90°得到线段AC,连结OB、OC.

(1)求点A的横坐标.(用含m的代数式表示).
(2)若m=3,则点C的坐标为
(3)当点C与抛物线的顶点重合时,求四边形ABOC的面积.
(4)结合m的取值范围,直接写出∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把两个全等的等腰直角三角板(直角边长为4)叠放在一起,且三角板EFG的直角顶点G位于三角板ABC的斜边中点处.现将三角板EFG绕G点按顺时针方向旋转α度(0°<α<90°)(如图1),四边形GKCH为两三角板的重叠部分.

(1)猜想BH与CK有怎样的数量关系?并证明你的结论;
(2)连接HK(如图2),在上述旋转过程中,设BH=x,△GKH的面积为y,
①求y与x之间的函数关系式,并写出自变量x的取值范围;
②当△GKH的面积恰好等于△ABC面积的 ,求x.

查看答案和解析>>

同步练习册答案