精英家教网 > 初中数学 > 题目详情

【题目】如图,某住宅小区在施工过程中留下了一块空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?

【答案】铺满这块空地共需花费=96×100=9600元.

【解析】

思路SABCSACD求出空地面积,乘以单价即可.

连结AC,如图所示:

Rt△ACD中,∠ADC=90°,AD=8米,CD=6米,

由勾股定理得:AC=10(米),

AC2+BC2=102+242=676,AB2=262=676,

AC2+BC2=AB2

∠ACB=90°,

该区域面积S=SACB﹣SADC=×10×24﹣×6×8=96(平方米),

铺满这块空地共需花费=96×100=9600元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(

A. a2
B. a2
C. a2
D. a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= 的图象如图,给出以下结论:
①常数k<1;
②在每一个象限内,y随x的增大而减小;
③若点A(﹣1,a)和A′(1,b)都在该函数的图象上,则a+b=0;
④若点B(﹣2,h)、C( ,m)、D(3,n)在该函数的图象上,则h<m<n.
其中正确的结论是(

A.①②
B.②③
C.③④
D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点.若AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面请你完成余下的证明过程)

(2)若将(1)中的正方形ABCD改为正三角形ABC(如图2),N是ACP的平分线上一点,则当AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的正方形ABCD改为边形ABCD……X,请你作出猜想:当AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:

如图1,在四边形ABCD中,ABAD,∠BAD=120°,∠B=∠ADC=90°,EF分别是BCCD上的点,且∠EAF=60°,探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DGBE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是__________________

探索延伸:

如图2,若在四边形ABCD中,ABADBD=180°,EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

结论应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以50海里/小时的速度前进,舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

能力提高:

如图4,等腰直角三角形ABC中,∠BAC=90°,ABAC,点MN在边BC上,且∠MAN=45°.若BM=5,CN=12,则MN的长为_________(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:

(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润为1200元?
(3)若该超市每星期销售这种文具盒的销售量不少于115个,且单件利润不低于4元(x为整数),当每个文具盒定价多少元时,超市每星期利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )

A. B. C. D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在5×4正方形网格中,有A,B,C三个格点(线与线的交点).

(1)若小正方形边长为1,则AC= , AB=
(2)在图中再找出一个格点D,满足:D与A,B,C三点中的两点组成的三角形恰好与△ABC相似:∽△ABC.

查看答案和解析>>

同步练习册答案