【题目】
(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD……X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
【答案】
(1)证明略
(2)理由略
(3)
【解析】解:(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=135°,
∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°
在△AEM和△MCN中:∵∴△AEM≌△MCN,∴AM=MN
(2)仍然成立.
在边AB上截取AE=MC,连接ME
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=60°,
∴∠ACP=120°.
∵AE=MC,∴BE=BM
∴∠BEM=∠EMB=60°
∴∠AEM=120°.
∵CN平分∠ACP,∴∠PCN=60°,
∴∠AEM=∠MCN=120°
∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM
∴△AEM≌△MCN,∴AM=MN
(3)
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2(m+1)x+m(m+2)
(1)求证:无论m为任何实数,该函数图象与x轴两个交点之间的距离为定值.
(2)若该函数图象的对称轴为直线x=2,试求二次函数的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠”; 乙旅行社说:“所有人按全票价的六折优惠”.已知全票价为a元,学生有x人,带队老师有1人.
(1)试用含a和x的式子表示甲、乙旅行社的费用;
(2)若有50名学生参加本次活动,请你为他们选择一家更优惠的旅行社.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第10(n是大于0的整数)个图形需要黑色棋子的个数是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC边上的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC于点G.
求证:(1)BF=CG;
(2)AB+AC=2AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
(1)数轴上点A表示的数为________.
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?
②设点A的移动距离AA′=x.
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:、两地相距,甲、乙两车分别从、两地同时出发,甲速每小时千米,乙速每小时千米,请按下列要求列方程解题:
若同时出发,相向而行,多少小时相遇?
若同时出发,相向而行,多长时间后两车相距?
若同时出发,同向而行,多长时间后两车相距?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请根据下面X与Y的对话解答下列各小题:
X:我和Y都是多边形,我们俩的内角和相加的结果为1440°;
Y:X的边数与我的边数之比为1∶3.
(1)求X与Y的外角和相加的度数;
(2)分别求出X与Y的边数;
(3)试求出Y共有多少条对角线?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com