精英家教网 > 初中数学 > 题目详情

【题目】

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点.若AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面请你完成余下的证明过程)

(2)若将(1)中的正方形ABCD改为正三角形ABC(如图2),N是ACP的平分线上一点,则当AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的正方形ABCD改为边形ABCD……X,请你作出猜想:当AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

【答案】

(1)证明略

(2)理由略

(3)

【解析】解:(1)AE=MC,BE=BM, ∴∠BEM=EMB=45°∴∠AEM=135°

CN平分DCP,∴∠PCN=45°∴∠AEM=MCN=135°

AEM和MCN中:∴△AEM≌△MCN,AM=MN

(2)仍然成立.

在边AB上截取AE=MC,连接ME

∵△ABC是等边三角形,

AB=BC,B=ACB=60°

∴∠ACP=120°

AE=MC,BE=BM

∴∠BEM=EMB=60°

∴∠AEM=120°

CN平分ACP,∴∠PCN=60°

∴∠AEM=MCN=120°

∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=BAM

∴△AEMMCN,AM=MN

(3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2(m+1)x+m(m+2)
(1)求证:无论m为任何实数,该函数图象与x轴两个交点之间的距离为定值.
(2)若该函数图象的对称轴为直线x=2,试求二次函数的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】暑假期间,学校组织学生去某景点游玩,甲旅行社说:如果带队的一名老师购买全票,则学生享受半价优惠”; 乙旅行社说:所有人按全票价的六折优惠.已知全票价为a元,学生有x人,带队老师有1人.

(1)试用含ax的式子表示甲、乙旅行社的费用;

(2)若有50名学生参加本次活动,请你为他们选择一家更优惠的旅行社.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第10(n是大于0的整数)个图形需要黑色棋子的个数是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC边上的垂直平分线DE与∠BAC的平分线交于点EEFABAB的延长线于点FEGAC于点G

求证:(1BFCG

2AB+AC2AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12OC边长为3.

(1)数轴上点A表示的数为________

(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.

①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?

  ②设点A的移动距离AA′x.

  ()S4时,求x的值;

  )D为线段AA′的中点,点E在线段OO′上,且OEOO′,当点DE所表示的数互为相反数时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,中线AD,BE交于F,则图中共有等腰三角形(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:两地相距,甲、乙两车分别从两地同时出发,甲速每小时千米,乙速每小时千米,请按下列要求列方程解题:

若同时出发,相向而行,多少小时相遇?

若同时出发,相向而行,多长时间后两车相距

若同时出发,同向而行,多长时间后两车相距

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据下面XY的对话解答下列各小题:

X:我和Y都是多边形,我们俩的内角和相加的结果为1440°;

YX的边数与我的边数之比为13.

(1)XY的外角和相加的度数;

(2)分别求出XY的边数;

(3)试求出Y共有多少条对角线?

查看答案和解析>>

同步练习册答案