精英家教网 > 初中数学 > 题目详情

【题目】如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )

A. B. C. D. 不能确定

【答案】B

【解析】

PBC的平行线,交ACM;则△APM也是等边三角形,在等边三角形APM中,PEAM上的高,根据等边三角形三线合一的性质知AE=EM;易证得△PMD≌△QCD,则DM=CD;此时发现DE的长正好是AC的一半,由此得解.

解答:解:过PPM∥BC,交ACM

∵△ABC是等边三角形,且PM∥BC

∴△APM是等边三角形;

∵PE⊥AM

∴AE=EM=AM;(等边三角形三线合一)

∵PM∥CQ

∴∠PMD=∠QCD∠MPD=∠Q

∵PA=PM=CQ

∴△PMD≌△QCDASA);

∴CD=DM=CM

∴DE=DM+ME=AM+MC=AC=,故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C为⊙O上的一点,点D是 的中点,过D作⊙O的切线交AC于E,DE=3,CE=1.

(1)求证:DE⊥AC;
(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)①若有意义,则化简=   

②化简:a2=   

(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD,把BCD沿BD翻折,得BDG,BG,AD所在的直线交于点E,过点DDFBEBC所在直线于点F.

(1)如图1,AB<AD,

①求证:四边形BEDF是菱形;

②若AB=4,AD=8,求四边形BEDF的面积;

(2)如图2,若AB=8,AD=4,请按要求画出图形,并直接写出四边形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知△ABC.

(1)请用尺规作图法作出BC的垂直平分线DE,垂足为D,交AC于点E, (保留作图痕迹,不写作法);

(2)请用尺规作图法作出∠C的角平分线CF,交AB于点F,(保留作图痕迹,不写作法);

(3)请用尺规作图法在BC上找出一点P,使△PEF的周长最小.(保留作图痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把a、b两个数中较小的数记作min{a,b},直线y=kx﹣k﹣2(k<0)与函数y=min{x2﹣1、﹣x+1}的图象有且只有2个交点,则k的取值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知ACBD,EA,EB分别平分CAB和DBA,CD过E点.求证:AB=AC+BD.

查看答案和解析>>

同步练习册答案