【题目】如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 .
【答案】或
【解析】
试题分析:连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.
如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P
∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,
∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,
即MD′=3或4.在Rt△END′中,设ED′=a,
①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,
解得a=,即DE=,
②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,
解得a=,即DE=.
科目:初中数学 来源: 题型:
【题目】如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2= . ( . ),
∴AB∥EF( . )
∴∠3= . ( . )
又∠B=∠3(已知)
∴∠B= . (等量代换)
∴DE∥BC( . )
∴∠C=∠AED( . ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC的三边,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有两个相等的实数根,试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高速公路的同一侧有A、B两城镇,如图,它们到高速公路所在直线MN的距离分别为AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之间建一个出口P,使A、B两城镇到P的距离之和最小.求这个最短距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习了利用尺规作一个角的平分线后,爱钻研的小聪发现,只有一把刻度尺也可以作出一个角的平分线.她是这样作的(如图):
(1)分别在∠AOB的两边OA,OB上各取一点C,D,使得OC=OD.
(2)连结CD,并量出CD的长度,取CD的中点E.
(3)过O,E两点作射线OE,则OE就是∠AOB的平分线.
请你说出小聪这样作的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com