精英家教网 > 初中数学 > 题目详情
(2013•舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(  )
分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r-2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.
解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,
∴AC=
1
2
AB=4,
设⊙O的半径为r,则OC=r-2,
在Rt△AOC中,
∵AC=4,OC=r-2,
∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,
∴AE=2r=10,
连接BE,
∵AE是⊙O的直径,
∴∠ABE=90°,
在Rt△ABE中,
∵AE=10,AB=8,
∴BE=
AE2-AB2
=
102-82
=6,
在Rt△BCE中,
∵BE=6,BC=4,
∴CE=
BE2+BC2
=
62+42
=2
13

故选D.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=
1
4
(x-m)2-
1
4
m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•舟山)如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌DCE;
(2)当∠AEB=50°,求∠EBC的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为
6
5
6
5

查看答案和解析>>

同步练习册答案