精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在四边形ABCD中,AD∥BC,AC⊥BC,点E、F分别是边AB、CD的中点,AF=CE.求证:AD=BC.
分析:首先判定两个三角形是直角三角形,然后证得CD=AB,从而可以利用HL证明两个直角三角形全等,证得结论.
解答:证明:∵AC⊥BC,
∴∠ACB=90°.
∵AD∥BC,
∴∠CAD=∠ACB=90°.(2分)
∵点E、F分别是AB、CD的中点,
∴CE=
1
2
AB
,AF=
1
2
CD
.(2分)
∵AF=CE,
∴CD=AB.(2分)
在Rt△CDA和Rt△ABC中,
AC=CA
CD=AB
(2分)
∴Rt△CDA≌Rt△ABC.(2分)
∴AD=BC.(2分)
点评:本题考查了三角形的中位线定理及直角三角形全等的判定,解题的关键是判定直角三角形并证明全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

39、已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O.求证:O是BD的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知,如图,在四边形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
请设计两种不同的分法,将四边形ABCD分割成四个三角形,使得分割成的每个三角形都是等腰三角形.画法要求如下:
(1)两种分法只要有一条分割线段位置不同,就认为是两种不同的分法;
(2)画图工具不限,但要求画出分割线段;
(3)标出能够说明不同分法所得三角形的内角度数,例如样图;
(4)不要求写出画法,不要求证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.

查看答案和解析>>

同步练习册答案