为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:
(1)自行车队行驶的速度是 km/h;
(2)邮政车出发多少小时与自行车队首次相遇?
(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?
解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;
(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得
24(a+1)=60a,解得:a=.
答:邮政车出发小时与自行车队首次相遇;
(3)由题意,得邮政车到达丙地的时间为:135÷60=,
∴邮政车从丙地出发的时间为: 135=,∴B(,135),C(7.5,0).
自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).
设BC的解析式为y1=k1+b1,由题意得,∴,∴y1=﹣60x+450,
设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.
当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.
答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.
科目:初中数学 来源: 题型:
某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
| 甲 | 乙 |
进价(元/件) | 15 | 35 |
售价(元/件) | 20 | 45 |
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).
(1)列出满足题意的关于x的不等式组,并求出x的取值范围;
(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).
(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?
(2)求点C在x轴上移动时,点P所在函数图象的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.
(1)求出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车行驶多长时间时,两车恰好相距50km.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com