精英家教网 > 初中数学 > 题目详情

等腰直角△ABC的斜边长为6,则△ABC的面积为________.

9
分析:根据等腰直角三角形的性质求出斜边上的高线是3,然后利用三角形的面积公式列式进行计算即可得解.
解答:解:如图,过点A作AD⊥BC于D,
∵△ABC是等腰直角三角形,
∴AD⊥BC,且AD=BC=×6=3,
∴△ABC的面积=×6×3=9.
故答案为:9.
点评:本题考查了等腰直角三角形的性质,熟练掌握等腰三角形的性质求出斜边上的高线的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、将图1,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.

(1)如图2,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图2中画出折痕;
(2)如图3,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是
三角形一边长与该边上的高相等

(4)如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是
对角线互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且精英家教网点A(0,2),点C(-1,0),如图所示:抛物线y=2ax2+ax-
32
经过点B.
(1)写出点B的坐标
 

(2)求抛物线的解析式;
(3)若三角板ABC从点C开始以每秒1个单位长度的速度向x轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积;
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)求点A、点B的坐标;
(2)求抛物线的解析式;
(3)设(2)中抛物线的顶点为D,求△DBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•平遥县模拟)如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(-1,0),tan∠ACO=2.一次函数y=kx+b的图象经过点B、C,反比例函数y=
m
x
的图象经过点B.
(1)求一次函数和反比例函数的关系式;
(2)直接写出当x<0时,kx+b-
m
x
<0的解集;
(3)在x轴上找一点M,使得AM+BM的值最小,并求出点M的坐标和AM+BM的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,将一块腰长为
5
的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上,
(1)点A的坐标为
(0,2)
(0,2)
,点B的坐标为
(-3,1)
(-3,1)
;抛物线的解析式为
y=
1
2
x2+
1
2
x-2
y=
1
2
x2+
1
2
x-2

(2)在抛物线上是否还存在点P(点B除外),使△ACP是以AC为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD.当△BCD的面积最大时,求点D的坐标.
(4)若点P是(1)中所求抛物线上一个动点,以线段AB、BP为邻边作平行四边形ABPQ.当点Q落在x轴上时,直接写出点P的坐标.

查看答案和解析>>

同步练习册答案