精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长AD为⊙O 的直径,E是AB上一点,将正方形的一个角沿EC折叠,使得点B恰好与圆上的点F重合,则 tan∠AEF=_____

【答案】

【解析】

连接OFOC.根据全等三角形的性质得到∠OFC=ODC=90°,于是得到FC是⊙O的切线;根据正方形的性质得到AD=BC=AB=CD,由∠CFE=B=90°,得到EFO三点共线.根据勾股定理得到BE的长,即可得到结论.

解:如图,连接OFOC

在△OCF 和△OCD 中,

∴△OCF≌△OCDSSS),

∴∠OFC=∠ODC90°,

CF 是⊙O 的切线,

∵四边形 ABCD 是正方形,

∴可设 ADBCABCD2

∵∠CFE=∠B90°,

EFO 三点共线.

EFEB

∴在△AEO 中,AO1AE2BEEO1+BE

∴(1+BE21+2BE2

BE

AE

tanAEF

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒.连接MN.

(1)求直线BC的解析式;

(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;

(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,BC与 B′C′交于点P,此时∠BPB′=25°,则∠CAB的大小为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100

(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】

(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2﹣2x+3.

(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.

(2)若图象与x轴交点为A.B,与y轴交点为C,求A、B、C三点的坐标;

(3)在图中画出图象.并求出△ABC面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

1)作ABC关于点C成中心对称的A1B1C1

2)将A1B1C1向右平移4个单位,作出平移后的A2B2C2

3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

如图1.在△ABC中,∠A、∠B、∠C所对的边分别为abc,可以得到:

证明:过点AADBC,垂足为D

RtABD中,

同理:

1)通过上述材料证明:

2)运用(1)中的结论解决问题:

如图2,在中,,求AC的长度.

3)如图3,为了开发公路旁的城市荒地,测量人员选择ABC三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求ABC三点围成的三角形的面积.

(本题参考数值:sin15°≈0.3sin120°≈0.91.4,结果取整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知二次函数yax2bx+3的图像经过点A(1,0),B(-2,3).

(1)求该二次函数的表达式

(2)求该二次函数的最大值

(3)结合图像解答问题y>3x的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等腰Rt△ABCACBC=2,P在以斜边AB为直径的半圆上MPC的中点.当点P沿半圆从点A运动至点BM运动的路径长是(  )

A. π B. C. 2 D.

查看答案和解析>>

同步练习册答案