精英家教网 > 初中数学 > 题目详情

猜想与归纳

    你能比较两个数2006和 20072006的大小吗?

    为了解决这个问题,我们首先把它抽象成数学问题,写出它的一般形式,即比较的大小(是正整数)。然后,我们从分析n=1,n=2,n=3,…这些简单情形入手,从中发现规律,经过归纳,猜想出结论.

    (1)通过计算,比较下列各组中两数的大小(在空格中填写“>”、“=”、“<”).

    ①12     21;②23     32;③34    43;④45    54;⑤56    65;…

(2)从第(1)题的结果经过归纳,可以猜想出的大小关系是:

                                 

    (3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:

20062007         20072006

(1)<,<,>,>,>;  

(2)n≤2时,;n>2时

(3)20062007>20072006

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、问题:你能比较两个数20022003与20032002的大小吗?为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(n是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小(在空格中填“<”“>”“=”)
①12<21②23<32③34>43④45>54
⑤56>65⑥66>75
(2)从第(1)题的结果经过归纳,可以猜想出nn+1和(n+1)n的大小关系;
(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小:20022003>20032002

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20062007与20072006的大小吗?为了解决问题,首先把它抽象成数学问题,写出它的一般形式,即比较nn+1与(n+1)n的大小(n是正整数),然后,从分析n=1,n=2,n=3,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
(1)通过计算,比较下列各组中两个数的大小(填“>”,“<”,“=”)
①12
21; ②23
32;③34
43;④45
54;⑤56
65; …
(2)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小:20062007
20072006
(3)从第(1)题的结果经过归纳,可以猜想出nn+1与(n+1)n的大小关系是
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n
当n=1或2时,nn+1<(n+1)n;当n>2的整数时,nn+1>(n+1)n

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:你能比较两个数20122013与20132012的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(即是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小
①12
21  ②23
32    ③34
43    ④45
54
⑤56
65  ⑥67
76
(2)从第(1)题的结果经过归纳,可以猜想nn+1和(n+1)n的大小关系;
(3)根据下面归纳猜想得到的一般结论,试比较下列两个数的大小:20122013
20132012

查看答案和解析>>

科目:初中数学 来源: 题型:

用所学的数学知识计算
(1)有8箱苹果,以每箱5㎏为标准,称重记录如下:(超过标准的为正数)1.5,-1,3,0,0.5,-1.5,2,-0.5. 8箱苹果的总质量水是多少?
(2)阅读下面材料并完成填空
你能比较两个数20012002与20022001的大小吗?
为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n的大小,然后,从分析n=1,n=2,n=3,n=4,…,这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
I、通过计算,比较下列①~③各组中两个数的大小(在横线上填上>,=,<)
①12
21
②23
32
③34
43
④45>54
⑤56>65
⑥67>76
II、从①小题的结果经过归纳,可以猜出nn+1与(n+1)n的大小关系是
当1≤n≤2时,nn+1<(n+1)n,当n>2时,nn+1>(n+1)n
当1≤n≤2时,nn+1<(n+1)n,当n>2时,nn+1>(n+1)n

III、根据上面归纳猜想得到的一般结论,可以得到20012002
20022001

查看答案和解析>>

同步练习册答案