精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请你判断并写出FE与FD之间的数量关系;请说明理由.
分析:方法一:在AC上截取AG=AE,连接FG,根据“边角边”证明△AEF和△AGF全等,根据全等三角形对应角相等可得∠AFE=∠AFG,全等三角形对应边相等可得FE=FG,再根据角平分线的定义以及三角形的内角和定理推出∠2+∠3=60°,从而得到∠AFE=∠CFD=∠AFG=60°,然后根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,根据全等三角形对应边相等可得FG=FD,从而得证;
方法二:过点F分别作FG⊥AB于点G,FH⊥BC于点H,根据三角形内心的性质可得FG=FH,再根据角平分线的定义以及三角形的内角和定理推出∠2+∠3=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和证明∠GEF=∠HDF,再利用“角角边”证明△EGF和△DHF全等,根据全等三角形对应边相等即可证明.
解答:解:FE=FD.
理由如下:方法一:如图1,在AC上截取AG=AE,连接FG,
∵AD是∠BAC的平分线,
∴∠1=∠2,
在△AEF和△AGF中,
AG=AE
∠1=∠2
AF=AF

∴△AEF≌△AGF(SAS),
∴∠AFE=∠AFG,FE=FG,
∵∠B=60°,
∴∠BAC+∠ACB=180°-60°=120°,
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠2=
1
2
∠BAC,∠3=
1
2
∠ACB,
∴∠2+∠3=
1
2
(∠BAC+∠ACB)=
1
2
×120°=60°,
∴∠AFE=∠CFD=∠AFG=60°.
∴∠CFG=180°-∠AFG-∠CFD=180°-60°-60°=60°,
∴∠CFG=∠CFD,
∵CE是∠BCA的平分线,
∴∠3=∠4,
在△CFG和△CFD中,
∠CFG=∠CFD
FC=FC
∠3=∠4

∴△CFG≌△CFD(ASA),
∴FG=FD,
∴FE=FD;

方法二:如图2,过点F分别作FG⊥AB于点G,FH⊥BC于点H,
∵F是△ABC的内心,
∴FG=FH,
∵∠B=60°,
∴∠BAC+∠ACB=180°-60°=120°,
∵AD、CE分别是∠BAC、∠BCA的平分线,
∴∠2=
1
2
∠BAC,∠3=
1
2
∠ACB,
∴∠2+∠3=
1
2
(∠BAC+∠ACB)=
1
2
×120°=60°,
∴∠AFE=∠2+∠3=60°,
∴∠GEF=60°+∠1,
又∵∠HDF=∠B+∠1=60°+∠1,
∴∠GEF=∠HDF,
在△EGF和△DHF中,
∠EGF=∠DHF=90°
∠GEF=∠HDF
FG=FH

∴△EGF≌△DHF(AAS),
∴FE=FD.
点评:本题考查了全等三角形的判定与性质,角平分线的定义,三角形的内角和定理,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,根据所求角度正好等于60°得到角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案