精英家教网 > 初中数学 > 题目详情
如图,已知在△ABC中,∠A = 90°,,经过这个三角形重心的直线DE // BC,分别交边ABAC于点D和点EP是线段DE上的一个动点,过点P分别作PMBCPFABPGAC,垂足分别为点MFG.设BM = x,四边形AFPG的面积为y

(1)求PM的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)联结MFMG,当△PMF与△PMG相似时,求BM的长.
(1)PM =1(2) () (3)

试题分析:解:(1)过点AAHBC,垂足为点H,交DE于点Q
∵ ∠BAC = 90°,,∴BC = 6.
又∵ AHBC,∴ Q是△ABC的重心.
∴ 
∵ DE // BCPMBCAHBC
∴ PM = QH = 1.
(2)延长FP,交BC于点N
∵ ∠BAC = 90°,AB = AC,∴ ∠B = 45°.
于是,由 FNAB,得 ∠PNM = 45°.
又由 PMBC,得 MN = PM = 1,
∴ BN = BM +MN = x +1,
∴ 

∵ PFABPGAC,∠BAC = 90°,∴ ∠BAC =∠PFA =∠PGA = 90°.
∴ 四边形AFPG是矩形.
∴ 
即 所求函数解析式为
定义域为
(3)∵ 四边形AFPG是矩形,∴ 
由 ∠FPM =∠GPM = 135°,可知,当△PMF与△PMG相似时,有两种
情况:∠PFM =∠PGM或∠PFM =∠PMG
(ⅰ)如果 ∠PFM =∠PGM,那么 .即得 PF = PG
∴ 
解得 x = 3.即得 BM = 3.
(ⅱ)如果 ∠PFM =∠PMG,那么 .即得 
∴ 
解得 
即得 
∴ 当△PMF与△PMG相似时,BM的长等于或3或
点评:该题相对较复杂,主要考查学生对几何图中线段的关系、面积等的表达式,求线段的长度除了可以直接求得,还可以通过等量代换求出。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,二次函数的图象与轴交于A(-3,0),B(1,0)两点,与y轴交于点C.

(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数图像的最低点坐标是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形OABC在平 面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-x与BC边相交于D点.

(1)若抛物线y=ax-x经过点A,试确定此抛物线的解析式;
(2)在(1)中的抛物线的对称轴上取一点E,求出EA+ED的最小值;
(3)设(1)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图像过点,与轴交于点.

(1)证明:(其中是原点);
(2)在抛物线的对称轴上求一点,使的值最小;
(3)若是线段上的一个动点(不与重合),过轴的平行线,分别交此二次函数图像及轴于两点 . 请问
是否存在这样的点,使.  若存在,
请求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A的坐标为(0,-4),点Bx轴上一动点,以线段AB为边作正方形ABCD(按逆时针方向标记),正方形ABCD随着点B的运动而相应变动.点Ey轴的正半轴与正方形ABCD某一边的交点,设点B的坐标为(t,0),线段OE的长度为m

(1)当t=3时,求点C的坐标;
(2)当t>0时,求mt之间的函数关系式;
(3)是否存在t,使点M(-2,2)落在正方形ABCD的边上?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1、y2、y3的大小关系为()
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),矩形ABCD的一边BC在直角坐标系中轴上,折叠边AD,使点D落在轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为,其中>0.

(1)求点E、F的坐标(用含的式子表示);
(2)连接OA,若△OAF是等腰三角形,求的值;
(3)设抛物线经过图(1)中的A、E两点,如图(2),其顶点为M,连结AM,若∠OAM=90°,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=x2x与x轴交于O,A两点. 半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动. 两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动. 设点P的横坐标为t .

(1)点Q的横坐标是         (用含t的代数式表示);
(2)若⊙P与⊙Q 相离,则t的取值范围是          .

查看答案和解析>>

同步练习册答案