2
分析:根据勾股定理求出AB,根据圆O是直角三角形ABC的内切圆,推出OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,证四边形ODCE是正方形,推出CE=CD=r,根据切线长定理得到AC-r+BC-r=AB,代入求出即可.
解答:根据勾股定理得:AB=
=10,
设三角形ABC的内切圆O的半径是r,
∵圆O是直角三角形ABC的内切圆,
∴OD=OE,BF=BD,CD=CE,AE=AF,∠ODC=∠C=∠OEC=90°,
∴四边形ODCE是正方形,
∴OD=OE=CD=CE=r,
∴AC-r+BC-r=AB,
8-r+6-r=10,
∴r=2,
故答案为:2.
点评:本题主要考查对切线长定理,三角形的内切圆与内心,勾股定理,正方形的性质和判定等知识点的理解和掌握,能推出AC-r+BC-r=AB是解此题的关键.